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Abstract. Damage detection in structural health monitoring (SHM) typically relies on global 

structural dynamic parameters, which may be hardly sensitive to the onset of structural damage. As 

a result, data analysis in SHM has been increasingly drawing from the field of machine learning 

(ML) for detecting subtle patterns in structural response data, indicative of structural damage. 

However, ML for damage detection requires structural response data corresponding to damage, 

which is hardly available. This paper proposes a damage detection approach coupling convolutional 

neural networks with numerical simulations. Specifically, the capabilities of convolutional neural 

networks are utilized for classifying structural response data into different damage scenarios. 

Furthermore, structural response data for training the convolutional neural networks is generated 

through numerical simulations. The proposed approach is validated through simulations of a steel 

pylon, showcasing that the proposed approach is capable of correctly classifying images of structural 

response data corresponding to different damage scenarios. 

1. Introduction 

A cornerstone of structural maintenance strategies for civil infrastructure is the ability to detect 

the onset of structural damage, which enables stakeholders to implement timely interventions 

that ensure public safety (Frangopol and Liu, 2007). In this direction, structural health 

monitoring (SHM) has matured over the last decades into a structural maintenance strategy that 

complements nondestructive evaluation techniques, such as visual inspections, by providing 

continuous information on the structural behavior of civil infrastructure (Dragos and Smarsly, 

2017). In particular, the continuous acquisition and analysis of structural response data has 

proven capable of detecting structural damage at early stages (Farrar and Worden, 2006). 

Damage detection in SHM builds upon data analysis (Catbas, 2009). Specifically, damage 

detection methods have been developed that convert structural response data, collected from 

civil infrastructure being monitored, into “knowledge” on the structural condition, based either 

on analyzing statistical relationships (e.g. cross-correlations) between different sources of data 

(“data-driven analysis”) or on matching numerical simulations to the data (“physics-based 

analysis”) (Cross et al., 2022). Knowledge from data-driven analysis is frequently provided in 

the form of structural dynamic parameters, such as eigenfrequencies and mode shapes, extracted 

as part of vibration-based SHM without making assumptions on the physical properties of civil 

infrastructure (Dragos and Smarsly, 2015). By contrast, physics-based analysis relies on fine-

tuning structural parameters of numerical models so that the behavior of the models matches 

the actual structural behavior as close as possible. Common ground between most data-driven 

analysis and physics-based analysis methods is that both types of methods usually yield 

knowledge on the global structural behavior parameters: On the one hand, data-driven analysis 

is restricted to structural dynamic parameters at locations measured by SHM systems and, on 

the other hand, physics-based analysis is typically restricted to fine-tuning global structural 

parameters, such as elasticity moduli. However, global structural behavior parameters may be 

hardly sensitive to small changes, induced by the onset of structural damage. Therefore, recent 

research in SHM has been exploiting the powerful computational capabilities of artificial 

intelligence (AI) (Smarsly et al., 2007). Specifically, machine learning (ML), representing an 
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AI subset, has advantageously been deployed in an attempt to associate subtle changes in 

structural parameters with structural damage scenarios (Rafiei and Adeli, 2018). 

Early research approaches on ML-based damage detection for SHM can be traced back to the 

early 1990s, mostly proposing artificial neural networks for finite element model updating. 

Seminal works, in this context, include the multi-layer perceptrons (feed-forward neural 

networks), introduced by Wu et al. (1992), Elkordy et al. (1993), and Masri et al. (1996), which 

primarily map perturbations of structural parameters with structural dynamic parameters, such 

as mode shapes, eigenfrequencies, and frequency-response functions. Moreover, neural-

network-based (NN-based) approaches have been proposed for associating the effective cross-

section areas of truss bridges with static displacements (Pandey and Barai, 1995) and for 

applying damage detection at a substructure level (Yun et al., 2000). Building on the seminal 

works, further approaches have accounted for damping in NN-based model updating (Lu and 

Tu, 2004), modeling errors in finite element simulations (Lee et al., 2005), and nonlinearities 

(Hasançebi and Dumlupinar, 2013). In recent literature, Park et al. (2017) have proposed a 

multilayer perceptron for mapping boundary conditions (rotational spring constants) to bridge 

responses, and Deng et al. (2017) have introduced a NN-based interval model updating method, 

accounting for the stochasticity of structural parameters. Finally, research attention has 

increasingly been drawn to neural networks for classification, such as convolutional neural 

networks, as reported in Abdeljaber et al. (2018), Zhang et al. (2018), and Sung et al. (2021). 

The powerful mapping capabilities of convolutional neural networks enable associating subtle 

patterns in structural response data with changes in structural parameters. However, 

convolutional neural networks fall within the category of supervised learning, thus requiring 

labeled input data corresponding to damage scenarios, which is hardly available in practice. 

This paper presents a damage detection approach for detecting structural damage using 

convolutional neural networks trained with structural response data that are generated via 

simulations of damage scenarios using numerical modeling. The proposed approach is a 

feasibility study towards transferring knowledge from simulations to practice in the form of 

features that can be detected by a convolutional neural network (CNN), to which time-domain 

structural response data is fed as input. The classification capabilities of convolutional neural 

networks have been investigated in previous work of the authors on sensor fault identification 

(Fritz et al., 2022). The purpose of this paper is to showcase how the classification capabilities 

can be utilized to detect features in image representations of the structural response data, 

without prior “manual” extractions of structural dynamic parameters that are common in several 

NN-based model updating methods. The proposed approach is validated via numerical 

simulations of a real-world steel pylon, showcasing the capability of the CNN to detect patterns 

in the structural response data that are associated with limited damage inflicted upon the pylon. 

In the remainder of the paper, first the theoretical background of the damage detection approach 

is illuminated, followed by the implementation and validation tests, using a numerical model 

of the steel pylon. The paper ends with a summary and a short discussion of the conclusions 

drawn, as well as with a brief outlook on follow-on research. 

2. Detecting structural damage using numerical simulations and convolutional neural 

networks 

In this section, the theoretical background of the damage detection approach is presented. First, 

convolutional neural networks are briefly introduced. Then, coupling of convolutional neural 

networks with numerical simulations towards damage detection is discussed. 
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The classification capabilities of convolutional neural networks have been the topic of intensive 

research in recent years across several disciplines (Li et al., 2022). Tasks assigned to 

convolutional neural networks largely involve classifying images on the basis of patterns and 

objects “recognized” on the images. In this context, convolutional neural networks are trained 

to detect patterns and objects by being presented with several images, “labeled” according to 

the classes considered in the classification, and by scanning the images. The basic architecture 

of the CNN used in this study is illustrated in Figure 1 by means of a typical CNN architecture, 

and it is further described in the following paragraphs. 

 

Figure 1: Layout of a typical convolutional neural network. 

The basic architecture of the CNN used in this study follows a concept similar to the 

feedforward artificial neural network (ANN) that has been implemented by the authors in the 

context of SHM applications (Smarsly and Law, 2014; Dragos and Smarsly, 2016). The 

architecture includes an input layer, one or more hidden layers, and an output layer. Contrary 

to the feedforward ANN concept, the input layer of the CNN accepts images as input data, 

instead of structural response data. Furthermore, the output layer consists of classes, with each 

class characterizing different damage scenarios. As regards the hidden layers, three types of 

layers are included in the CNN: 

• Convolution layers scan images using “kernel functions”. For a typical convolution 

layer, each kernel function is essentially a matrix of weights, which is progressively 

“moved” across an image, in steps defined as “strides”. The dimensions of the kernel 

function must be equal to or smaller than the image dimensions. In every stride, the 

convolution between the weights and a block of the image of the same size as the kernel 

function matrix is computed (i.e. the sliding dot product). Upon completing the scanning 

of the image with all kernel functions, the convolutions are used to populate the so-

called “feature map” of the convolution layer. Different kernel functions are employed 

for scanning different features in the images. The convolutions are passed through an 

activation function for producing the output of the convolution layer. 

• Pooling layers reduce the dimensionality of the outputs of convolutional layers. 

Specifically, a pooling layer combines the outputs from several neurons of a 

convolutional layer (“cluster of neurons”) into a single neuron in the next convolutional 

layer. As such, a pooling layer is usually inserted between two convolutional layers or 

between a convolutional layer and a fully connected layer. Pooling is performed either 

by computing the average of the outputs (“average pooling”) or by using the maximum 

output in the cluster of neurons. 

• Fully connected layers connect neurons between successive layers. One fully connected 

layer is placed between the last pooling layer and the output layer to perform the 
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classification. The neuron-by-neuron connection of the fully connected layer ensures 

that all the outputs of the pooling layer are considered for the classification. 

For performing damage detection, the CNN are trained with images of structural response data 

corresponding to different damage scenarios. Training essentially involves updating the weights 

of the kernel functions to improve the accuracy of image classification. The images used for 

training are organized in a data set, from which three subsets are deducted:  

(i) The training set typically comprises 70% of the data set. The training set is 

propagated through the CNN in “mini batches”, the propagation of one mini-batch 

being referred to as “iteration”. In each iteration, the classification accuracy is 

estimated and, depending on the error in the classification, the weights are adjusted 

according to the so-called “learning rate”. The propagation of all mini-batches of 

the training set is termed “epoch”. 

(ii) The validation set typically consists of 20% of the data set. The validation set is 

propagated through the CNN periodically during training, after a predefined number 

of iterations. The purpose of the validation set is to ensure – during the training – 

that the CNN can “generalize” in classifying images, i.e. that the same classification 

accuracy is achieved between images of the training set and an independent set of 

images, thus avoiding overfitting. 

(iii) The testing set typically consists of 10% of the data set. Upon completing all epochs, 

training is terminated. The testing set, representing an independent data set that the 

CNN has not “seen” during training, is then propagated through the CNN to estimate 

the classification accuracy. 

For training the CNN, i.e. to detect damage effectively, abundant images of structural response 

data from different damage scenarios are generated to populate the data set. Evidently, in real-

world structures, structural response data from damage scenarios is hardly available. Therefore, 

in this study, the data set is populated with numerical simulations using finite element analysis. 

In particular, for a structure equipped with an SHM system, a finite element (FE) model is 

created and calibrated using preliminary structural response data collected from the SHM 

system. The preliminary structural response data is also used to estimate the load cases, to which 

the structure is subjected. Thereupon, simulations are devised by performing time-history 

analyses of the FE model. The simulations include the load cases, previously defined, and 

perturbations of structural parameters of the FE model indicative of structural damage. The 

images of the structural responses from the simulations are organized in classes, depending on 

the damage scenario, to be used for training the CNN. It should be noted that the information 

contained in images of structural responses in the form of time-response plots, such as the image 

exemplarily shown in the input layer of Figure 1, may be relatively poor. As a result, the 

structural responses from the simulations are first subjected to continuous wavelet transform 

(CWT), which has proven capable of exposing rich features in structural response data (Peralta 

et al., 2021): 

 

( ) ( )
1

,x

t τ
L a τ x t ψ dt

aa

+

−

− 
=  

 
 . (1) 

 

In Equation 1, Lx is the CWT coefficient of function x, and ψ(t) is the “mother” wavelet function, 

which is used as a basis for producing variant wavelet functions by changing the “scale” a and 
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the shift factor τ. The steps towards performing damage detection are shown in Figure 2. The 

implementation and validation of the proposed approach are presented in the next section. 

 

Figure 2: Damage detection steps of the proposed approach. 

3. Implementation and validation 

The tests devised to validate the proposed approach are presented in this section. First, the 

simulations conducted to generate the data set are discussed, followed by a description of the 

CNN implemented for the purposes of the tests. Finally, the training of the CNN is explained, 

and the results from propagating the testing set are presented and discussed. 

The structure used for the simulations is a steel pylon, shown in Figure 3, which, in laboratory 

tests, is subjected to impact hammer testing. The pylon consists of two welded parts with a total 

height of 2,480 mm and a tapered circular hollow section (CHS) with diameters of 

approximately 200 mm at the base and 170 mm at the top. The bottom part has a thickness of 

4 mm and a height of 130 mm, practically serving as an “reinforced” transition zone to a base 

plate of dimensions 400 mm × 400 mm × 20 mm (length × width × thickness). The thickness 

of the upper part is equal to 2.5 mm. The base plate is bolted to a strong floor at four points, 

ensuring adequate fixity. 

 

Figure 3: Steel pylon used for the simulations. 
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The FE model of the pylon is created and analyzed using the ANSA-META-EPILYSIS suite, 

which includes a finite element pre-processing software package (ANSA), a solver 

(EPILYSIS), and a post-processing software package (META) (BETA CAE SA, 2021). The 

pylon is modeled with approximately 4,000 shell elements with six degrees of freedom. The 

material properties are computed from experimental tests on specimens extracted from the 

pylon and are equal to E = 230 GPa (modulus of elasticity) and ρ = 7.88 t/m3 (material density). 

The bolted connections are modeled as fully fixed, using rigid body constraints. The FE model 

of the pylon is shown in Figure 4. 

 

Figure 4: Finite element model of the pylon used for simulations. 

The load cases considered for the simulations are indicative of the loads to which the structure 

is subjected, i.e., in this case, impact hammer testing. As a result of the impact hammer testing, 

preliminary acceleration response data is collected using an SHM system. The preliminary 

acceleration response data is used to fine-tune structural parameters of the FE model, ensuring 

that the structural dynamic parameters of the FE model match the frequency content of the 

preliminary data, as well as to estimate the load cases. Thereupon, three scenarios are devised, 

one corresponding to an initial (“undamaged”) condition and two corresponding to structural 

damage in the x and y direction, respectively. Structural damage is simulated by removing shell 

elements from a thin 1-mm wide zone of finite elements at the welding between the two parts 

of the pylon, which represents a weak part of the pylon, as shown in Figure 5. 

 

Figure 5: Simulation of damage in the FE simulations. 
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In each scenario, the time-history analyses of the simulations are conducted with a sampling 

rate of fs = 256 Hz, and each analysis yields 120,000 points in the structural responses. The 

structural responses of the simulations are subjected to CWT with 1,000-point-length windows, 

producing 120 images for each scenario, which are used as input to the CNN. Exemplary CWT 

images are shown in Figure 6. 

  

Figure 6: CWT images used for training the CNN: Damage in x direction (left) and in y 

direction (right). 

Selecting the architecture of the convolutional neural network for the proposed approach is 

usually a trial-and-error process, attempting to find a trade-off between computational burden 

and classification accuracy. However, for the sake of simplicity of the feasibility study 

presented herein, the convolutional neural network employed for the purposes of the tests builds 

upon the pre-trained architecture of “GoogleNet”, which has been adopted in several AI-ML 

studies (Yoo, 2015). Specifically, the outputs of the fully connected layer and of the output 

layer, respectively, of the GoogleNet CNN are adjusted to the three classes used in this study. 

The CNN is trained using the Matlab deep learning toolbox (Mathworks, 2018). For each class, 

84 images are used as a training set, 24 images as a validation set, and 12 images as a testing 

set. The mini-batch size is set to 21 images, resulting in 4 iterations per epoch, and the total 

number of epochs is set to 100. The learning rate is set equal to 0.02, gradually reduced every 

10 epochs by a factor of 0.5. Weight updating is performed using the steep gradient descent 

method.  

Upon completing training, the maximum classification accuracy, reached during training, for 

the validation set is 97.78%, which is deemed adequate for the purposes of the study. The results 

from applying the testing set are shown in the form of a confusion matrix in Table 1. 

Table 1:   Results from propagating the testing set through the CNN. 

  Predicted label 

  
Undamaged Damage in 

x dir. 

Damage in 

y dir. 

A
ct

u
a

l 
la

b
el

 Undamaged 12 0 0 

Damage in 

x dir. 
1 11 0 

Damage in 

y dir. 
1 0 11 

Shift

S
ca

le

Lx

Shift

S
ca

le

Lx
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As can be seen from Table 1, the CNN classifies correctly 34 out of the 36 images of the testing 

set, corresponding to a classification accuracy of 94.5%, which is compatible with the accuracy 

of the validation set. Furthermore, considering that SHM systems are employed for long-term 

operation, damage detection in real-world structures using the proposed approach would rely 

on classifying several images, thus overcoming potential problems from isolated false 

classifications. The next step, which will be addressed in future work, involves obtaining 

structural response data from the actual structure and classifying the data using the CNN. 

4. Summary and conclusions 

Structural health monitoring strategies attempt to detect the onset of structural damage in civil 

infrastructure. Damage detection typically relies on analyzing structural response data, 

collected from structures being monitored, either utilizing statistical relationships within the 

structural response data or calibrating numerical models according to the structural response 

data. However, the knowledge obtained from data analysis in SHM usually concerns global 

structural dynamic parameters, which may be hardly sensitive to the onset of structural damage. 

To overcome the limitations of global structural dynamic parameters, data analysis in SHM has 

been increasingly drawing from the field of artificial intelligence and machine learning for 

detecting subtle patterns in the structural response data that are indicative of structural damage. 

Despite the powerful computational capabilities, common AI and ML methods in SHM require 

vast amounts of structural response data for training, which, for the case of structural damage, 

is hardly available.  

This paper has proposed a damage detection approach coupling convolutional neural networks 

with numerical simulations. Specifically, the proposed approach suggests using the capabilities 

of convolutional neural networks for classifying structural response data into damage scenarios. 

Furthermore, generating structural response data for training the convolutional neural networks 

is achieved through numerical simulations for each damage scenario, the results of which are 

subjected to continuous wavelet transform for producing images of structural responses. The 

damage detection approach has been implemented and validated through simulations of a steel 

pylon. In particular, time-history simulations of a finite element model of the pylon have been 

conducted for generating structural response data corresponding to three scenarios, one without 

damage and two with damage along two horizontal directions. The structural responses of the 

simulations have been used to train a CNN. The results of the tests have shown that the CNN 

has been trained successfully and has been capable of correctly classifying the independent set 

of images of the testing set with high classification accuracy. Future work will focus on using 

a CNN, trained with simulations, for classifying structural response data from actual structures, 

as well as on optimizing the architecture of the CNN. 
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