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Abstract—Gas source localization (GSL) helps mitigate the
impact of industrial accidents and natural disasters. While GSL
may be dangerous and time-consuming when performed by
humans, swarms of agile and inexpensive nano aerial robots may
increase the safety and efficiency of gas source localizations. Since
the small payloads of nano aerial robots limit the sensing and
computing resources, strategies adapted from biological swarms,
such as colonies of social insects, are used to coordinate robot
swarms. Most swarm GSL strategies are based on the assumption
that the maxima of gas concentrations are sufficiently close to
the gas sources. However, prior studies have indicated that the
occurrence of ‘“bouts”, a metric for the intermittency of gas
distributions, may advantageously be used as a more accurate
gas source proximity indicator. This paper presents a swarm
GSL strategy employing bouts as source proximity indicators
and a bio-inspired pheromone system for communication. Nano
aerial robots, deployed in this study, act as agents and emit
pheromone markers in an artificial environment upon detecting
bouts. Leveraging the concept of artificial potential fields, the
agents switch between exploiting the knowledge of the swarm by
following pheromone gradients and exploring the search space
by targeting a random point. The agents are repelled by each
other and by walls to avoid collisions. The swarm GSL strategy
is implemented into three nano aerial robots and validated in
a real-world experiment in an indoor environment with a single
gas source. The results indicate that the the swarm GSL strategy
presented in this paper is capable of GSL in indoor environments
and that the intermittency of gas distributions is a better source
proximity indicator than the mean concentration.

Index Terms—Mobile robotic olfaction; nano aerial robot; gas
source localization; bouts; distributed robotics

I. INTRODUCTION

Gas source localization (GSL) using mobile robots is of
value in a range of industrial, environmental, and humanitarian
tasks, where the search space is dangerous and/or hard to
reach. Using multiple robots may increase the search effi-
ciency, but require reliable coordination. Biological swarms,
such as populations of social insects, are a popular source
of inspiration to achieve reliable coordination between large
numbers of relatively simple agents. In the field of mobile
robot olfaction (MRO), most swarm-inspired research treats
GSL as a concentration optimization problem based on the
assumption that the gas concentration maximum is close to
the true source location [1]. Under this assumption, existing
swarm intelligence algorithms may be used for GSL. The most
popular algorithms are particle swarm optimization (PSO) and
ant colony optimization (ACO) [2]. While PSO and ACO are
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validated for many use cases, PSO and ACO generally do not
consider the physical and dynamic aspects of the real world.
It is believed that taking direct inspiration from biological
swarms could lead to simpler, yet more efficient algorithms, as
biological swarms operate under similar conditions as robotic
swarms. Furthermore, several studies have demonstrated that
the concentration maximum is not necessarily a good source
proximity indicator in complex environments, and that the
intermittency of the gas plume, measured through so-called
bouts, could be a better choice [3].

The key contribution of this work is the introduction of a
swarm GSL strategy that uses bouts as a proximity indica-
tor and swarm-inspired pheromone communication (Sec. II)
and its validation in simulations and real-world experiments
(Sec. IIT): Agents detect bouts and emit artificial pheromones
that, once integrated into a map, are used for navigation
and collision avoidance. Exploration-exploitation balance is
achieved by occasionally ignoring the pheromone map. The
highest pheromone concentration indicates the source estima-
tion. Although not being the first strategy using pheromone
communication [4], our approach integrates, stores, and dif-
fuses the pheromone signals, making it scalable, robust to
noise and defects, reactive to changes in source position, and
simplifies the agents to being purely reactive.

II. BOUT-BASED SWARM GSL STRATEGY

The strategy proposed in this paper consists of two parts,
(i) the artificial environment (Sec. II-A), which coordinates the
swarm, and (ii) the agents (Sec. 1I-B), which collect measure-
ments and release pheromones into the artificial environment
when bouts are detected. The following subsections present
both parts and their interactions.

A. Artificial Environment

The purpose of the artificial environment is to enable the
agents to effectively collaborate. The artificial environment is
implemented through the artificial potential field (APF) con-
cept [5]. Upon request, the agents receive the attractive force
of the artificial pheromone map (APM) and the repulsive force
of the anti-collision layer. The APM mimics the environmen-
tal part in biological pheromone communication. The APM
allows (i) integrating an arbitrary number of signals into a
function of space and (ii) diffusing the function over time. The



first aspect allows an arbitrary number of simplistic organisms
to collaborate without being aware of each other, and the
second aspect allows the system to work probabilistically, as
the effect of individual markers will fade into the background
if not reinforced.

The APM is represented by a discrete map, with agents
releasing pheromone markers — particles of predefined size
and intensity — at their current position. A diffusing kernel is
applied to the map every time a new pheromone marker is de-
posited, to avoid losing information if no new pheromones are
deposited and to weight newer entries higher than preceding
ones. To calculate the attractive force, a kernel-smoothed copy
of the APM is converted into an APF. Here, the kernel size
regulates the range of influence of the pheromone markers.
Next, the gradient or force of the APF is computed and
vortexed according to the following expression:
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where Fyorter,z/y denotes the resulting vortexed force, F/,
representss the initial force in x/y direction, and - is a factor
determining vorticity and spin direction. Vortexation causes
agents to circle promising areas instead of heading straight to
a pheromone peak, helping the agents to avoid local optima.
The vortexed force field is lastly normalized to [0, 1], which
is important to ensure collision avoidance. Upon an agent
requesting the forces at its position, the resulting force field
and the repulsive force is returned.

To avoid collisions, a repulsive force F.., is calculated for
each agent based on the distance to obstacles and other agents
using an adaption of the FIRAS function presented in [5]:
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where d represents the distance between the requesting agent
and the obstacle, and d,,;, and d,,,, represent parameters
for the closest distance allowed and the range of influence of
the obstacle, respectively. Both parameters are chosen based
on the positioning accuracy and the distance the agents can
safely pass each other. For optimal navigation, APM and anti-
collision forces should have the same spin direction, requiring
a reverse rotation for the enclosing wall repulsion forces. The
rotation helps avoid deadlocks during obstacle avoidance.

B. Agents

The agents are modeled as reactive particles with a bout
detector and motion controller. The bout detector is adapted
from [6]: The agents monitor the second derivative of the
concentration signal for a positive zero crossing, which is
referred to as a bout. A bout indicates that a sensor is in contact
with a new plume filament. Noise-induced bouts are filtered
by a threshold, while bouts that do not exceed a threshold are
discarded. The raw signal and both derivatives are smoothed
with an exponentially weighted moving average filter before
further processing. The positions of accepted bouts are sent

to the artificial environment, which integrates the bouts as
pheromone markers into the APM.

The motion controller navigates the agents, which either
follow the attractive force of the APM to exploit swarm
knowledge or the attractive force of a randomly generated
setpoint to explore the search space. The attractive force of
the random setpoint F',.; is defined by:
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Ypos and ?Set are the position vectors of the agent and
setpoint, respectively, and ¢ is the distance in which the agent
slows down linearly. Then, the resultant force is normalized
and factored by the maximum linear velocity to obtain the
velocity vector, which is passed to the low-level controller of
the aerial robot.

III. IMPLEMENTATION AND VALIDATION

The swarm used for validation consists of palm-sized
Crazyflie 2.0 quadrocopters (Bitcraze AB, [7]) equipped with
a 3D local positioning system and a custom-build sensor deck
comprising an optical motion detection system and two SGP30
metal-oxide semiconductor gas sensors (Sensirion, [8]) [9].
The bouts are detected from the transient signals of the ethanol
pixel of the gas sensors. A quadrocopter weighs ~ 39.6g
and achieves flight times of up to 5 minutes. The strategy
proposed in this paper is implemented via the Crazyswarm
Python API [10] and the Robot Operating System (ROS). The
strategy is validated in simulations (Sec. III-A) and in real-
world experiments (Sec. III-B).

A. Simulation

The source proximity indication potential of bouts was
validated in simulations using GADEN [11], a simulation
framework designed for algorithms in the field of MRO.
In a simulated environment, 12 agents were deployed in a
(6 x 10) m? room with two openings, one of which served as
the inlet and the other as the outlet, containing a single gas
source placed at (3.0,1.5,0.75) m. The pre-calculated wind
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Fig. 1. Maps of the simulated sensor data.
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Fig. 2. Real-world experiments.

field provided by GADEN consisting of strong, fluctuating
airflow was used. Agents randomly traversed the room at a
height of 0.5m, logging sensor measurements and positions
at 10 Hz. The simulation ran for 30 min with 10x acceleration.

Approximately 180,000 sensor readings were recorded dur-
ing the simulation. Fig. 1(a) shows the mean sensor readings
(lower resistances correspond to higher concentrations) and
Fig. 1(b) shows the total bout count per cell, both visualized in
discrete maps of the search space. Both maps show a clustering
of cells with low resistances and high bout counts, respectively,
close to the source, albeit offset 1.5m in the direction of
airflow. While the gradients in Fig. 1(a) are relatively smooth
and no boundaries are visible, the clusters in Fig. 1(b) show a
denser V-shaped distribution with steep gradients in downwind
direction. The simulation results suggest that the bout count
can be a more accurate and less noisy source proximity
indicator than the mean concentration.

B. Real-World Experiments

The swarm GSL strategy is validated in real-world ex-
periments. A swarm of three aerial robots is deployed in
a cuboid indoor environment with a 2D search space of
approx. (3 x 3)m? containing a single gas source, as shown
in Fig. 2. The gas source, consisting of a tube connected to
a bottle of liquid ethanol and a 1 W fan, was positioned at
(0.80,0.75) m and elevated 0.1 m off the ground. Pressurized
air was introduced to stimulate evaporation, and the emission
rate was indirectly controlled by setting the airflow to 21/min.
The source was rotated to face the center of the search space
and opened roughly 1 minute before each run. Between the
runs, the source was closed and the room was ventilated for
comparable starting conditions. The robots terminated each
run either by landing/crashing or running out of battery.
Parameters required by the algorithm were chosen heuristically
and data was logged at 10 Hz.

During 16 runs, approximately 20,000 measurements were
recorded. The individual flight times were in a range from 0s
(crash at takeoff) to 329 s, and the combined flight times of all
three aerial robots were in the range between 303 s and 903 s
with a mean of 613.4s+165.2s. The experimental results are
shown in Figs. 3 and 4. The mean resistance plot in Fig. 3(a)
shows smooth gradients, similar to Fig. 1(a). However, in
contrast to Fig. 1(a), the cluster of low mean resistance is
shifted in upwind direction. The bout distributions in Fig. 3(b),
again, show dense clusters with steep gradients, but in contrast
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Fig. 3. Maps of the real-world sensor data.

to the simulation results, no V-shape is visible. Fig. 4(a) shows
the final source location estimates. All estimation errors are
in airflow direction. Furthermore, the mean error is close to
the center line of the airflow of the fan. Fig. 4(b) shows the
average estimation error of the combined flight time scaled
by the number of active agents, including the results of each
individual run. The source estimation, on average, improves
rapidly during the first 90 s combined flight time. After 330s,
the final source estimation error is on average 0.7 m £ 0.29 m
ranging from 0.25m (run #10) and 1.28 m (run #8), and
improves after 540s to 0.6 m + 0.21 m.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a swarm GSL strategy using bouts as source
proximity indicators and virtual pheromones as communi-
cation medium was introduced. Simulations and real-world
experiments demonstrated that bouts may be strong source
proximity indicators in indoor environments compared to using
mean concentrations. Furthermore, the strategy proposed in
this paper has shown promising results in real-world experi-
ments, although still in its infancy. Potential future work may
focus on tuning the parameter set of the swarm GSL strategy.
Further improvements may be achieved by introducing wind
information and extending the strategy to three dimensions.
Furthermore, the swarm GSL strategy may be compared to
existing algorithms under identical environmental conditions.
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Fig. 4. Experimental results: (a) Final estimations in space and (b) smoothed
mean error of combined flight time of the experiments with standard deviation
over time. Run time individually scaled by the number of active agents, and
estimations excluded after termination.
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