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Abstract 
 
Gas source localization (GSL) is crucial for mitigating the impact of industrial accidents and natural disasters, for example finding 
leaks in oil and gas facilities or survivors in collapsed environments. Traditional GSL methods involving human intervention may 
be hazardous and time-consuming. Utilizing swarms of agile and cost-effective nano aerial robots holds the potential to enhance the 
safety and efficiency of GSL operations. This study draws inspiration from biological swarms, particularly colonies of social insects, 
to coordinate and optimize the performance of nano aerial robotic swarms. While most existing swarm GSL strategies assume gas 
concentration maxima to be in close proximity to actual gas sources, recent research has highlighted the importance of “bouts” as a 
more precise indicator of gas source proximity, considering the intermittency of gas distributions. In this paper, a swarm GSL strategy 
is introduced that incorporates bouts as indicators of source proximity, complemented by a bio-inspired pheromone communication 
system. Specifically, nano aerial robots are deployed as autonomous agents. Upon detecting bouts, the agents emit pheromone 
markers in an artificial environment, mimicking social insects. Using the concept of artificial potential fields, the agents either exploit 
the search space by following pheromone gradients or explore the search space. The proposed swarm GSL strategy is implemented 
and validated in a real-world experiment, conducted in an indoor environment with a single gas source. The experimental results 
demonstrate the capability of the swarm GSL strategy to perform effectively in indoor environments and that the intermittency of 
gas distributions is a better source proximity indicator than the mean concentration. It is concluded that this research may provide a 
methodological basis for improving gas source localization techniques and enhancing disaster response capabilities. 
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1 Introduction 

Gases may pose hazards to organisms, due to the toxicity or flammability. Therefore, gas source localization (GSL) 
becomes imperative to avoid danger and is the first step towards closing gas leaks in a range of industrial, environmental, 
and humanitarian applications. Robots may be used to perform GSL, which is exceptionally useful in environments that 
are dangerous and/or difficult to access. Employing multiple robots may enhance search efficiency, but requires 
dependable coordination. Taking inspiration from biological swarms, such as communities of social insects, is a widely 
explored avenue for achieving robust coordination among numerous yet simple agents. In the realm of mobile robot 
olfaction (MRO), much research has been inspired by swarm behavior approaches that interpret GSL as a concentration 
optimization problem, assuming the gas concentration maximum closely approximates a source location [1]. Given this 
premise, prevailing swarm intelligence algorithms may be applied to address GSL. 

Particle swarm optimization (PSO) and ant colony optimization (ACO) are among the most widely used algorithms 
for GSL performed by multiple robots, as shown in a recent review [2]. The review included 46 studies, of which 30 
studies used PSO and 6 studies used ACO. However, PSO and ACO simplify the tangible and dynamic elements of the 
environments for computational optimization by assuming no physical interaction between the agents. Deriving direct 
inspiration from biological swarms may yield algorithms that are simpler yet more effective, given that biological 
swarms function under comparable conditions to robotic swarms. In addition, numerous investigations have illustrated 
that the concentration maximum may not always serve as an effective indicator of source proximity in complex 
environments. Alternatively, the intermittency of gas plumes, assessed by so-called “bouts”, may offer a more viable 
option [3].  

In an attempt to counteract the disadvantages of PSO and ACO, this study introduces a swarm GSL strategy using 
bouts as proximity indicators, coupled with pheromone communication inspired by biological swarms (Section 2). 
Whenever agents detect bouts, the agents emit artificial pheromones at the respective position into an artificial 
environment. Based on the artificial environment, virtual forces are computed for navigation and collision avoidance 
with the artificial potential field (APF) concept. To maintain a balance between exploitation and exploration, agents 



2 

 ICCCBE, 25-28 August 2024, ÉTS, Montréal, Québec, Canada    #-2 

switch between (i) following pheromone gradients and (ii) investigating uncovered areas in the search space. Source 
estimation is determined by the highest concentration of pheromones in the artificial environment. The swarm GSL 
strategy is implemented and validated in simulations and real-world experiments (Section 3). The paper closes with 
conclusions and future work (Section 4). 

2 Bout-based swarm GSL strategy 

The swarm GSL strategy presented in this study comprises two integral components. In Section 2.1, the artificial (i.e., 
computational) environment is described, which is responsible for coordinating the swarm. Section 2.2 covers the 
agents, which are tasked with collecting measurements and emitting pheromones into the artificial environment upon 
detecting bouts. Furthermore, the interactions of the agents and the artificial environment are described. 

2.1 Artificial environment 

The artificial environment serves the purpose of facilitating efficient collaboration among the agents and is implemented 
through the APF concept [5]. Two different types of requests can be sent by the agents to the artificial environment, (i) 
the deposition of artificial pheromones in the artificial pheromone map (APM), which is part of the artificial 
environment, and (ii) the attractive and repulsive forces applying at the current position of the agents. The attractive 
forces are calculated from the APM and the repulsive forces are calculated in the so called “anti-collision component” 
based on the distances of the agents to walls and other agents. 

 
Artificial pheromone map. The APM mimics the role of the environment in biological pheromone communication. 
The purpose of the environment in pheromone communication is characterized by two facets, (i) an arbitrary number 
of signals is integrated into a spatial function, and (ii) the spatial function is diffused over time. The first facet allows 
an arbitrary number of simple agents to cooperate without mutual awareness, while the second facet introduces a 
probabilistic functionality, as the effect of individually deposited pheromones diminishes over time unless the 
pheromones are consistently reinforced. The representation of the APM involves a discrete map covering the search 
space, where agents deposit pheromone markers of predetermined size and intensity at their respective locations. 
Following the deposition of a new pheromone marker, a diffusion kernel is applied to the APM. The event-based 
diffusion of pheromone markers, compared to the natural continuous diffusion in a real environment, avoids the loss of 
information when no new pheromone markers are deposited for a while. Still, the event-based diffusion gives newer 
entries more weight than earlier ones. For computing the attractive force, a copy of the APM is again smoothed with a 
diffusing kernel and then transformed into an APF. In this process, the kernel size governs the range of influence exerted 
by the pheromone markers. Subsequently, the gradient of the APF is calculated, resulting in a force field, and vortexed 
based on the following expression: 

 Fvortex,x = Fx + Fy · γ, (1a) 

 Fvortex,y = Fy - Fx · γ, (1b) 

where Fvortex,x/y represents the resultant vortexed force, Fx/y denotes the initial force in the x/y direction, and γ is a factor 
that determines spin direction and vorticity. The vortexation results in agents not being attracted in a straight line to the 
current local pheromone maximum, but instead circling around the “promising” area. The circling behavior avoids 
repeated visits and thus the reinforcement of local optima. Finally, the vortexed force field is normalized to the range 
[0, 1]. The normalization ensures that the force is in a predefined range, which ensures that within a certain minimum 
distance from other agents and obstacles, the repulsive force always dominates to avoid collisions. The normalized 
vortex force field is the attractive force field of the APM. 
 
Anti-collision. The purpose of the anti-collision component is to avoid collisions among agents and between agents and 
obstacles. The anti-collision component is made up of the static repulsive potential of the search space boundaries and 
potential obstacles, as well as the dynamic repulsive potentials of the agents. Following [5], the repulsive force Frep 
should approach infinity as the distance d between the agent and obstacle goes to zero. Additionally, a minimum distance 
dmin is introduced within which the repulsive force is always greater than the maximum attractive force. Due to 
normalization of the vortexed force field, the maximum attractive force is one. As agents should not be affected by far 
away objects, the repulsive force should be zero if the distance is larger than some maximum distance dmax. Finally, the 
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function should be continuously and monotonically differentiable. In the swarm GSL strategy, an adaption of the FIRAS 
function presented in [5] is employed that satisfies the mentioned conditions. To avoid collisions, a repulsive force Frep 
is calculated for each agent as follows: 

 Frep=
dmin

2

1
dmin

 - 1
dmax

1

d
 - 1

dmax

1

d2     ,  if d ≤ dmax    

0                                         ,  otherwise     

 (2) 

The selection of parameters dmin and dmax is subject to the positioning accuracy and the safe distance at which agents 
can navigate past each other. The anti-collision component sums up all individual repulsive forces of an agent on each 
other agent and obstacle into a resultant repulsive force. The resultant repulsive forces are also vortexized according to 
Equation (1). To achieve optimal navigation, it is essential that the APM and anti-collision forces share the same spin 
direction, which necessitates a reverse rotation for the repulsion forces generated by the enclosing walls. The same spin 
direction aids in preventing deadlocks during obstacle avoidance. 

2.2 Agents 

The agents are conceptualized as reactive particles comprised of a bout detector and a motion controller. The bout 
detector, inspired from [6], operates as follows: Agents calculate the second derivative of the measured concentration 
signal. Agents observe the second derivative to identify a positive zero crossing, termed as a bout. A bout signifies that 
a sensor has encountered a new plume filament. Since the sensor readings and therefore the bout detection is exposed 
to noise, noise-induced bouts are to be filtered out. First, the raw signal and both derivatives undergo smoothing through 
an exponentially weighted moving average (EWMA) filter. The EWMA filter is employed by the following function: 

 xs,i = αxi + 1 - α xs,i-1,   with (3a) 

 α = 1 - e ln(2)/τ, (3b) 

where xi denotes the raw value of the current iteration, xs,i and xs,i-1 denote the smoothed value at the current and previous 
iterations respectively, and τ represents the half-life of the raw values in terms of the iteration count. Second, a threshold 
is introduced to discard bouts not exceeding the threshold. The positions of accepted bouts are transmitted to the artificial 
environment. The artificial environment integrates the bouts into the APM as pheromone markers. 

The motion controller steers the agents and switches between two attraction modes. The first mode guides the agents 
to exploit the swarm knowledge by pursuing the attractive force emanating from the APM. In the second mode, agents 
follow the attractive force from a randomly generated setpoint for exploration of the search space. The attractive force 
of the random setpoint, denoted as F⃗set, is calculated as: 

 F⃗set = 

X⃗set - X⃗pos

X⃗set - X⃗pos
    , if X⃗set - X⃗pos  > ε

X⃗set - X⃗pos

ε
       , otherwise               

 (4) 

where X⃗pos and X⃗set represent the position vectors of the agent and setpoint, respectively, and ε is the distance in which 

the agent linearly reduces speed. Subsequently, the force F⃗set is normalized. The motion controller will switch modes if 
the active attractive force, either towards the pheromone gradient or to the random setpoint, falls below some threshold 
force, indicating a lack of pheromone or reaching the vicinity of the random setpoint, respectively. Also, the motion 
controller switches modes after a maximum duration of the active mode. The calculated force is adjusted by the 
maximum linear velocity to obtain the velocity vector, which is passed to the low-level controller of the aerial robot.  

3 Implementation and validation 

In the first subsection 3.1, the aerial robot swarm and its components are described. In subsection 3.2, the 
implementation of a simulation is specified. In the simulation, the potential of bouts as a source proximity indicator is 
validated. In subsection 3.3, the swarm GSL strategy is validated in real-world experiments. 
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3.1 Aerial robot swarm 

To validate the swarm GSL strategy, a swarm of palm-sized Crazyflie 2.0 quadrocopters (Bitcraze AB, [7]) is used. 
Each quadrocopter of the swarm is equipped with a 3D local positioning system [8] and a customized sensor deck that 
includes two SGP30 metal-oxide semiconductor gas sensors (Sensirion, [9]) and an optical motion detection system 
[10]. A quadcopter is shown in Figure 1. 

 

 

Fig. 1. The Crazyflie 2.0 quadrocopter platform with mounted sensors. 

 
The 3D local positioning system estimates the absolute indoor 3D position of the copter. The aerial robot measures 

its distances to a set of distributed Ultra-wideband-based anchors based on continuously transmitted synchronization 
packets from these anchors. The distances are used to calculate the absolute position of the robot, which can be used for 
autonomous flight and collision avoidance. With the local positioning system, an accuracy of about 0.1 m is realized. 
The gas sensor consists of two pixels, one sensitive to hydrogen (H2) and the other sensitive to ethanol (C2H5OH). From 
the readings of the two pixels, the sensor is able to calculate the total volatile organic compound and CO2 equivalent 
onboard. As the real-world experiments, described in subsection 3.3, are performed with ethanol, only the transient 
signals of the ethanol pixel are used for detecting bouts. The ethanol pixel is specified for a range of 0.3 to 30 ppm, with 
an accuracy of 15% of the measured value. With the sensors and battery mounted on the quadrocopter, a take-off weight 
of ≈ 39.6 g and flight times of up to 5 minutes are achieved. The swarm GSL strategy proposed in this study is 
implemented using the Robot Operating System (ROS) and the Crazyswarm Python API [11]. 

3.2 Simulation 

The potential of bouts to indicate the gas source proximity was validated through simulations using GADEN [12]. 
GADEN is a simulation framework developed in ROS, specifically designed for mobile robotic systems and gas sensing 
algorithms in the field of MRO. In the simulation, 12 agents were deployed in a rectangular room measuring (6×10) m2. 
The room has two openings, one serving as the inlet and the other as the outlet. A single gas source was placed at 
coordinates (3.0, 1,5, 075) m. The simulation incorporated a pre-calculated wind field from GADEN, featuring strong, 
fluctuating airflow. The agents traversed the room by approaching random setpoints at 0.5 m height. A screenshot of 
the simulation of the visualization tool RViz in ROS is shown in Figure 2. 
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Fig. 2. Screenshot of the simulated environment in RViz, a visualization tool for ROS. 

The agents logged the sensor measurements and positions at 10 Hz. The simulation, accelerated 10 times, ran for 30 
minutes, resulting in approximately 180,000 sensor readings. Figure 3(a) illustrates mean sensor readings, where lower 
resistances correspond to higher concentrations. Figure 3(b) depicts the total bout count per cell. The figures visualize 
the readings in discrete maps of the search space. Both maps exhibit clusters of cells with low resistances and high bout 
counts near the source, although offset by 1.5 m in the airflow direction. While the gradients in Fig. 3(a) appear relatively 
smooth with no visible boundaries, the clusters in Fig. 3(b) display a denser V-shaped distribution including steep 
gradients in the downwind direction. The simulation results suggest that the bout count may serve as a more accurate 
and less noisy indicator of source proximity compared to the mean concentration. 

 

  
(a) Mean readings (b) Total bout counts 

Fig. 3. Maps of the simulated sensor data. 
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3.3 Real-world experiments 

The validation of the swarm GSL strategy is conducted through real-world experiments. A trio of aerial robots is 
deployed in a cuboid indoor environment, featuring a 2D search space of approximately (3×3) m² with a single gas 
source, as depicted in Fig. 4. The gas source, comprising a bottle of liquid ethanol connected to a tube and a 1 W fan, is 
positioned at (0.80, 0.75) m, elevated 0.1 m above the ground. To stimulate evaporation, pressurized air is introduced, 
and the emission rate is indirectly controlled by maintaining the airflow at 2 l/min. The source faces the center of the 
search space and opens roughly 1 minute before each run. Between runs, the source is closed, and the room is ventilated 
to ensure comparable starting conditions. Runs conclude either with the robots landing, crashing or running out of 
battery. Algorithm parameters were chosen heuristically. Sensor readings were logged at 10 Hz. Over 16 runs, around 
20,000 measurements were recorded, with individual flight times ranging from 0 s (crash at takeoff) to 329 s. The 
combined flight times of all three quadrocopters range from 303 s to 903 s, with a mean of 613.4 s ± 165.2 s. 
 

 

Fig. 4. Real-world experiments. 
 

The experimental results are presented in Figs. 5 and 6. Fig. 5(a) displays a mean resistance plot with smooth 
gradients, akin to Fig. 3(a). However, in contrast to the simulation results, the cluster of low mean resistance is shifted 
in the upwind direction. In Fig. 5(b), bout distributions again showcase dense clusters with steep gradients, but unlike 
the simulation, no V-shape is evident. Fig. 6(a) illustrates the final source location estimates, with all estimation errors 
in the airflow direction. Notably, the mean error aligns closely with the center line of the airflow of the fan. Fig. 6(b) 
displays the average estimation error of the combined flight time scaled by the number of active agents, encompassing 
results from each individual run. The source estimation, on average, improves rapidly during the initial 90 s of combined 
flight time. After 330 s, the final source estimation error averages 0.7 m ± 0.29 m, ranging from 0.25 m (run #10) to 
1.28 m (run #8). Improvement continues after 540 s, reducing the error to 0.6 m ± 0.21 m. 

 

Aerial robots Gas source 
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(a) Mean readings (b) Total bout counts 

Fig. 5. Maps of the real-world sensor data. 
 

  
(a) (b) 

Fig. 6. Experimental results: (a) Final estimations in space and (b) smoothed mean error of combined flight time of the experiments with
standard deviation over time. Run time individually scaled by the number of active agents, and estimations excluded after termination. 

4 Conclusions and future work 

This paper has presented a swarm GSL strategy utilizing bouts as indicators of source proximity and virtual pheromone 
communication for swarm cooperation. Unlike previous studies conducted in this field, the swarm GSL strategy 
proposed herein is characterized by the integration, storage, and propagation of pheromone signals, rendering this study 
scalable, robust to noise and errors, responsive to changes in source position, and streamlining agents to a purely reactive 
nature. Both simulations and real-world experiments underscore the effectiveness of bouts as robust indicators in indoor 
environments, outperforming the use of mean concentrations. Despite being in its early stages, the proposed strategy 
exhibits promising outcomes in real-world experiments. Future research could concentrate on refining the parameter set 
of the swarm GSL strategy, which was chosen heuristically in this study. Enhancements might be attained by 
incorporating wind information and expanding the strategy into three dimensions. Additionally, a comparative analysis 
of the swarm GSL strategy against existing algorithms under identical environmental conditions could offer valuable 
insights. 
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