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Abstract

Fault identification (FI) is an integral part of sensor fault
diagnosis in structural health monitoring (SHM) systems.
However, current FI approaches often overlook
composite sensor faults, i.e. different sensor fault types
occurring simultaneously within an individual sensor. As
a result, actual fault occurrences in real-world SHM
systems may be underestimated. This paper introduces an
FI approach utilizing long short-term memory networks,
addressing composite faults. The FI approach is validated
using sensor data recorded by a real-world SHM system.
The results demonstrate the capability of the FI approach
to identify composite sensor faults, thus enhancing the
reliability and accuracy of fault diagnosis.

Introduction

Structural health monitoring (SHM) is a non-destructive
evaluation technique employing data recorded by sensors
(“sensor data”) to assess structural conditions (Law et al.,
2014). SHM aims to improve safety and cost efficiency in
structural maintenance through filling gaps of periodic
visual inspections (Cawley, 2018). Hardware or software
errors, exposure to harsh environmental conditions,
degradation, and signal interferences may lead to
malfunctions of sensors (“faulty sensors”) in SHM
systems (Zhang et al., 2018). Consequently, faulty sensors
may compromise the outcomes of SHM systems (Steiner
etal., 2019).

In SHM systems, sensor fault types include bias, drift,
gain, precision degradation, complete failure (constant or
with noise), and outliers (Kullaa et al., 2013). Fault
diagnosis approaches for SHM systems have been
proposed based on either physical or analytical
redundancy (Frank, 1990). Physical redundancy entails
installing additional, i.e. “redundant”, sensors and
detecting faults based on sensor data comparisons.
However, the high cost, power consumption, and
maintenance associated with physical redundancy have
been the primary motivation for developing analytical
redundancy approaches (Smarsly & Petryna, 2014). In
general, analytical redundancy employs mathematical
models to characterize a system, leveraging the inherent
redundancy present in the sensor data (Al-Zuriqat et al.,
2023). Fault diagnosis using analytical redundancy
comprises four steps (Patton, 1990):

e Fault detection

e Fault isolation

e Fault identification

e Fault accommodation

In the fault detection step, residuals between sensor data

and corresponding “virtual outputs”, derived from
mathematical models, are evaluated using threshold logic

or hypothesis testing (Isermann & Balle, 1997). In case
faults are detected, fault isolation involves determining
the locations of the faulty sensors. To gain insights into
the underlying causes of sensor faults and define
strategies for compensating for errors induced by sensor
faults, the type or nature of the faults are determined in
the fault identification (FI) step. Finally, in the fault
accommodation step, data recorded by the faulty sensor is
reconstructed using virtual outputs of the mathematical
models.

Existing fault diagnosis approaches have mainly focused
on detecting, isolating, and accommodating sensor faults.
Rao et al. (2007) has presented a concept, originally
proposed by Kramer (1992), introducing a null-subspace-
based approach for sensor fault detection and isolation,
combined with autoassociative neural networks for fault
accommodation. Smarsly & Law (2014) have proposed a
decentralized fault detection and isolation approach in
wireless SHM systems employing artificial neural
networks. The approach has been extended from the time
domain to the frequency domain and has also accounted
for the presence of structural damage (Dragos & Smarsly,
2016). Al-Zuriqat et al. (2023) have introduced an
adaptive sensor fault detection, isolation, and
accommodation approach for SHM systems using
feedforward  artificial  neural = networks  with
backpropagation, considering single sensor faults
occurring simultaneously in individual sensors. Liu et al.
(2022) have used stacked gated recurrent unit neural
networks to detect, isolate and accommodate sensor
faults, and global-local logic to differentiate sensor faults
from structural damage.

Among fault diagnosis approaches that include FI, Fritz et
al. (2022) have proposed an analytical-redundancy
approach, which integrates feedforward artificial neural
networks and convolutional neural networks to detect,
isolate, identify, and accommodate sensor faults.
Additionally, other approaches, based on generalized
likelihood ratio (Li et al., 2019), on generalized quasi-
natural analogy test principle (Yan et al., 2020), and on
set theory and support vector machine (Yu et al., 2014),
have also addressed the FI step. However, in the
aforementioned studies, only single sensor faults have
been considered, i.e. one sensor fault type within each
individual sensor. Moreover, not all sensor fault types
have been addressed. For example, outliers (Fritz et al.
2022; Li et al., 2019), drift, precision degradation, and
complete failure (Yan et al., 2020) have not been
included.

Sensors in SHM systems may experience combinations of
faults, i.e. faults of different types occurring
simultaneously within an individual sensor (hereinafter
termed “composite sensor faults”). The plausibility of



composite sensor faults occurrence in SHM systems has
been corroborated in Li et al. (2022), in which composite
sensor faults have been observed during experimentation,
specifically gain and drift in one sensor.

In summary, despite the importance of FI in gaining
insights into underlying causes of sensor faults within
SHM systems, current FI approaches often fail to account
for composite sensor faults, which may manifest in real-
world SHM systems (Li et al., 2022). In this paper, an
approach towards identification of composite sensor
faults (ICSF) is proposed. Sensor data with artificially
injected composite sensor faults is used to train long
short-term memory (LSTM) classification networks,
addressing composite sensor faults.

The remainder of the paper is organized as follows: First,
composite sensor faults in SHM systems are elucidated.
Then, a description of the ICSF approach is introduced.
Next, the implementation and validation of the ICSF
approach are presented, and the results are discussed.
Finally, the paper ends with a summary and conclusions,
and an outlook on future research is provided.

Composite sensor faults

Sensor fault types manifest into errors, which have
distinct footprints on sensor data. For example, a bias is
represented by a constant deviation of the sensor data
from the values that should be measured (“actual values”,
e.g. structural responses or environmental parameters). A
drift is characterized by the gradual deviation of sensor
data from the actual values over time. A gain occurs when
sensor data is systematically scaled by a constant value.
Precision degradation is caused by the contamination of
sensor data with noise. A complete failure is observed as
sensor data consisting of a constant value (“complete
failure constant”) or noise (“complete failure with noise”),
regardless of changes occurring in the actual values.
Finally, an outlier manifests as a discontinuous
observation in the sensor data that deviates from the actual
values at isolated time instances.

The aforementioned sensor fault types are usually
addressed as single sensor faults, occurring in individual
sensors. However, as mentioned previously, sensors in
real-world SHM systems may experience composite
sensor faults, an example of which, consisting of drift and
an outlier, is illustrated in Figure 1. As a result, full fault
identification needs to address both single sensor faults
and composite sensor faults. The description of the ICSF
approach, including two phases, each comprising several
steps, are presented in the following section.
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Figure 1: lllustration of a composite sensor fault: (a) a single
sensor fault with drift, (b) a single sensor fault with an outlier,
and (c) a composite sensor fault consisting of drift and an outlier

Description of the ICSF approach

In this section, the ICSF approach is presented,
comprising two phases, (i) preparing the training dataset,
and (ii) developing the classification models. A flowchart
describing the workflow of the ICSF approach is shown
in Figure 2.

Phase 1: Preparing the training dataset

1. Sensor data is recorded by SHM systems within the
so-called “data collection period”. The total number
of data points p recorded by each sensor in the data
collection period is representative of the normal
operation of the structure.

2. A correlation analysis is conducted on the sensor
data to unveil the number of correlated sensors &
within a SHM system. Each sensor in the set of
correlated sensors is denoted with i (i = 1, ..., k).
Data recorded by all correlated sensors fi5 is stored
in matrix A. As result, matrix A has a length equal
to the number of data points p, and a width equal to
the number of correlated sensors &, as shown in
Equation 1.
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Figure 2: Flowchart of the ICSF approach

Phase 2: Developing the classification models

A total of k input and output datasets are created to
train classification models in a later step. The
sensor data in matrix A are copied into input dataset
i i=1, ..., k), and composite sensor faults are
artificially injected into the vector f;, i.e. in sensor
data recorded by sensor i. Injected sensor fault types
are stored in the classification output dataset i. As a
result, the input dataset i contains clean data from
sensors (1, 2, ..., i1, i+1, ...k), and sensor data
from sensor i with composite sensor faults.

Data in the input dataset i is normalized using a
minimum-maximum normalization method, shown
in Equation 2, to avoid overfitting issues while

training the classification models. Then, the
normalized input dataset i, as well as the output
dataset i are split into training dataset (70%),
validation dataset (15%), and testing dataset (15%).
In Equation 2, x represents an arbitrary
measurement in the sensor data, while X, and Xax
denote the minimum and maximum measurements
in the sensor data, respectively. The variable
Xnormalizea COTrEsponds to the normalized value. Both
normalization parameters X, and X, used for the
input dataset 7 are saved to be applied to new sensor
data that is fed to the classification model M; after
training.

_ _ X" Xmin
Xnormalized = Xmax—%mi (2)
min

Phase 2: Developing the classification models

1.

The initial architecture of the LSTM classification
network is defined. The LSTM classification
network has an input layer, hidden layers, and an
output layer. In Figure 3, the general architecture of
the LSTM classification network is illustrated. The
input layer is a sequence input layer with a length
equal to the number of correlated sensors k. The
hidden layers include successions of LSTM layers
and “dropout” layers. In each LSTM layer, memory
cells and a set of gates regulate the flow of data.
This architecture enables LSTM layers to capture
and retain long-term dependencies in sequential
data, making them particularly effective for tasks
such as sensor data analysis. In each dropout layer,
a probability of dropout is defined representing the
likelihood (set between 0 and 1) of randomly
neglecting measurements passed through the
LSTM layer as means of preventing overfitting.
The number of LSTM layers as well as the number
of dropout layers may vary based on the model
accuracy, which is determined in a later step. The
output layers contain a fully-connected layer, a
Softmax layer, and a classification layer. The fully-
connected layer connects every neuron of the last
hidden layer to the neurons of the output layer,
representing the number of classes in the
classification problem. The Softmax layer is used
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Figure 3: General architecture of the LSTM classification network



between the fully connected layer and the
classification layer to convert raw logits into
probability distributions, facilitating
interpretability, backpropagation, and optimal
training. Finally, the classification layer contains all
classes of the classification problem, more
specifically, the number of sensor fault types ¢ to be
included in the FI step. The number of sensor faults
¢, is calculated using Equation 3, and depends on:
(i) the number of single sensor faults m included in
each composite sensor fault, and (ii) the total
number of single sensor faults n included in all
composite sensor faults.

c(n,m) = n

3)

One classification model M; for each correlated
sensor i (i =1, ..., k) is created by training an LSTM
using the training dataset i. During training, the
training dataset i is fed sequentially (in “batches”)
to the LSTM classification network, i.e. each batch
of the normalized input dataset is fed to the input
layer and the corresponding classes of the output
dataset are fed to the output layer. The training
consists of updating weighted connections between
neurons, until the probabilities of the Softmax layer
reach a predefined level of accuracy. Thereupon,
the classification model M; is created, capable of
recognizing patterns and features in the input
dataset i and classifying the sensor data into the
corresponding composite sensor fault type. The
validation dataset is used to fine-tune the
hyperparameters, and prevent overfitting during
training.

m!(n-m)

Upon completing training and validating, the
accuracy of model M; is obtained using the testing
dataset. For model M; to be accepted, the
classification accuracy must lie above a FI
threshold y. The FI threshold y is derived following
the same rationale as the fault detection threshold y
in previous related research (Al-Zurigat et al.,
2023). Equation 4 introduces the formula to
calculate the accuracy (dcc) of the classification
model M;.

Number of correct preditions
Acc = ! £ 4)

Total number of preditions

4. Finally, if the accuracy of model M; is satisfactory,
the model is saved to identify faults of sensor i (i =
1, ..., k). However, if the accuracy of model M; is
not satisfactory, a different architecture of the
LSTM classification network is defined and a new
model M; is trained (back to step 1 of phase 2).

The implementation and validation of the ICSF approach
using sensor data from a real-world SHM system installed
on a pedestrian bridge is presented in the next section.

Implementation and validation of the ICSF
approach

This section describes the implementation and validation
of the ICSF approach. To implement the ICSF approach,
the programming language MATLAB is utilized to
analyze the sensor data, inject faults, and train the
classification models. The validation test is carried out
using sensor data (acceleration measurements) from a
real-world SHM system installed on a pedestrian bridge.
First, the pedestrian bridge and the SHM system are
presented. Then, the ICSF approach is applied using the
acceleration measurements recorded by the real-world
SHM system.

Description of the pedestrian bridge and the SHM
system

The pedestrian bridge, located in Evosmos, Thessaloniki,
Greece, has been a subject of research since the
construction in 2016. (Dragos et al., 2020; Smarsly et al.,
2022a; and Smarsly et al., 2022b). The pedestrian bridge,
is a composite concrete-steel structure, in which a steel
structure supports a reinforced-concrete deck. The
dimensions of the reinforced-concrete deck are 35.00 m
(length) and 4.60 m (width).

Figure 4 illustrates the top view of the pedestrian bridge
and the locations of the accelerometers used in the
validation test. The SHM system comprises four
accelerometers (i.e. Si, Sz, S3, and S4), which have been
previously tested and found to be free of faults. The
accelerometers are equally distributed along the central
axis spanning the length of the bridge, spaced seven
meters apart from each other.
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Figure 4: Top view of the pedestrian bridge with the locations of the accelerometers



Description of the validation test

For preparing the training dataset (phase 1), acceleration
measurements are recorded by the four accelerometers
(S1, Sz, S3, and S4) over data collection period of 90
minutes at a sampling rate of 128 Hz. The total number of
data points p=692,628 is recorded by each
accelerometer.

Next, correlations within the acceleration measurements
are investigated via a correlation analysis. A strong
correlation has been exposed by the Pearson correlation
coefficient among all four accelerometers, i.e. k£ = 4.
Notably, the lowest correlation coefficient 0.937 has been
observed between sensors S; and Ss. Then, the
acceleration measurements, recorded by all four
correlated accelerometers f1s4 = 4, are stored in matrix
Ago2628x4.

To determine the sensor fault types to be included in the
validation test, as well as the size of the classification
layer in a later step, a total of five single faults (n = 5) are
considered, i.e. bias, drift, gain, precision degradation and
outliers. Complete failure, either constant with noise),
entails sensors essentially ceasing to operate and can,
therefore, hardly be combined with other single sensor
faults into composite sensor faults. Combinations of two
single faults in the same sensor (m = 2) are considered,
e.g. drift and outlier at the same time within an individual
sensor. As a result, using Equation 3, the total number of
composite sensor faults is ¢ (n, m) = 10. Table 1 provides
an overview of the composite sensor faults considered in
the validation test.

Table 1: Sensor fault types considered in the validation test

No. Composite sensor fault
1 Bias + Drift
2 Bias + Gain
3 Bias + Precision degradation
4 Bias + Outliers
5 Drift + Gain
6 Drift + Precision degradation
7 Drift + Outliers
8 Gain + Precision degradation
9 Gain + Outliers
10 Precision degradation +

Outliers

Acceleration measurements stored in matrix Agoze28x4 are
copied into four input datasets. Each input dataset is
divided equally into 10 subsets, for which each sensor
fault type shown in Table 1 is artificially injected. The
classes of the composite sensor faults injected into the

input dataset i (i = 1, ..., 4) is stored in the output dataset
ii=1,...,4).

Next, acceleration measurements, stored in the input
dataset i, are normalized using the minimum-maximum
normalization method shown in Equation 2. The
normalized input dataset i is split into 70 % training
dataset (484,838 data points), 15 % validation dataset
(103,894 data points), and 15 % testing data (103,894 data
points). Both normalization parameters X, and X, used
for the input dataset i during training are saved, to be
applied to new sensor data that is fed to the classification
model M; after training.

The initial architecture for the LSTM classification
network is defined, with the input layer consisting in a
sequence input layer with length & = 4. The output layer
consists of a fully-connected layer, a Softmax layer, and a
classification layer with 10 classes, where each class
present a composite sensor fault from Table 1. Three
hidden layers are defined, each comprising a LSTM layer
followed by a dropout layer. To avoid overfitting during
training, the probability of all dropout layers has been set
to 20 %.

A total of four classification models, equal to the number
of the correlated sensors (k = 4), are created by training an
equal number of LSTM classification networks. Each
model M; classifies sensor fault types of sensor i, using
acceleration measurements from the four correlated
sensors of the SHM system as input data. A total training
time of 69 minutes for each LSTM classification model is
recorded.

Based on Equation 4, the accuracy of the models is
evaluated using the testing dataset (103,894 data points).
Using a FI threshold y = 0.85, a model with an accuracy
above 85 % is considered acceptable (Al-Zuriqat et al.,
2023). The lowest model accuracy has been observed in
model M,, with an accuracy of 90.3 %.

Finally, the fourth step involves saving all trained
classification models M;, M,, M3, and My to identify
sensor fault types for sensor S;, S», S;, and S,
respectively. The trained classification models are tested
using acceleration measurements newly recorded by the
SHM system, as presented and discussed in the following
section.

Results and discussion

This section presents and discusses the results of applying
the classification models (M;, M2, M3, and M), obtained
by the ICSF approach, to newly recorded acceleration
measurements. The acceleration measurements used in
the validation test have been recorded by the real-world
SHM system and correspond to a data collection period of
30 minutes with a sampling rate of 128 Hz. The total
number of data points recorded by each of the
accelerometers is p = 230,876 data points. Subsequently,
all composite sensor faults introduced in Table 1 have
been randomly injected into the newly recorded
acceleration measurements. Table 2 presents the results of



testing the classification models. To determine the
accuracy of the classification models, the number of
sensor faults identified is compared to the number of
sensor faults injected in the testing dataset.

Table 2: Fault identification results of artificially injected
sensor fault types including composite faults

. Correctly
Fault Sensor Il;;eucl::d identified Acc
type faults
Bias + Drift S4 13,607 13,600 99.9 %
Bias + Gain Si 13,522 13,411 99.1 %
Bias +
Precision Sz 13,720 13,632 99.3 %
degradation
Bias+ o
Outliers S3 5,378 4692 87.2 %
Drift + Gain S4 13,627 12859 94.3 %
Drift +
Precision Si 13,390 12,944 96.6 %
degradation
Drift + o
Outlicrs S2 5,461 261 4.7 %
Gain +
Precision S3 13,638 13,373 98.0 %
degradation
Gain + o
Outliers Sa 5,556 4,871 87.6 %
Precision
degradation + Si 5,398 4,126 76.4 %
Outliers
Total - 103,297 93,769 90.7 %

As presented in Table 2, the FI capabilities of models M,
M,, M3, and M4 have been demonstrated using the newly
recorded acceleration measurements with artificially
injected faults. Out of 103,279 faults injected into the
newly recorded acceleration measurements, 93,769
sensor fault types have been correctly identified,
representing a total accuracy rate of 90.7 %.

Upon delving deeper into the results of the identification
of composite sensor faults, it is noticeable that the
classification model achieved the highest accuracy in
identifying the composite sensor fault “Bias + Drift” with
an accuracy rate of 99.9%. Conversely, a considerably
low accuracy rate was observed in the identification of the
composite sensor fault “Drift + Outliers” at 4.8%. The low
accuracy of identifying the composite fault type “Drift +
Outliers” may be attributed to the subtle patterns of
outliers, as they correspond to point singularities in a
continuous signal, which may be hard to be identified as
features by the LSTM classification network.

Summary and conclusions

Fault diagnosis using analytical redundancy, building on
mathematical models, has been gaining increasing interest

in SHM, owing to the low cost when avoiding redundant
sensors, as compared to traditional physical redundancy
approaches. Fault diagnosis encompasses fault detection,
isolation, identification, and accommodation. Despite the
importance of FI in gaining insights into underlying
causes of sensor faults within SHM systems, current FI
approaches often fail to account for composite sensor
faults, which may manifest in real-world SHM systems.

This paper has presented an approach towards
identification of composite sensor faults (ICSF). Sensor
data with artificially injected composite sensor faults has
been used to train LSTM classification networks,
addressing composite sensor faults. The ICSF approach
has been implemented using the programing language
MATLAB, and validated using acceleration
measurements recorded by a real-world SHM system.
From the results, it is concluded that the ISCF approach
has been proven capable of identifying composite sensor
faults, thus enhancing the reliability and accuracy of fault
diagnosis in SHM systems.

Future work may involve coupling the ICSF approach
with other existing fault detection, isolation, and
accommodation approaches to establish a comprehensive
fault diagnosis concept. Furthermore, the ICSF approach
may be embedded into wireless sensor nodes to identify
sensor faults on board the sensor nodes within
decentralized SHM systems.
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