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Abstract 

Fault identification (FI) is an integral part of sensor fault 
diagnosis in structural health monitoring (SHM) systems. 
However, current FI approaches often overlook 
composite sensor faults, i.e. different sensor fault types 
occurring simultaneously within an individual sensor. As 
a result, actual fault occurrences in real-world SHM 
systems may be underestimated. This paper introduces an 
FI approach utilizing long short-term memory networks, 
addressing composite faults. The FI approach is validated 
using sensor data recorded by a real-world SHM system. 
The results demonstrate the capability of the FI approach 
to identify composite sensor faults, thus enhancing the 
reliability and accuracy of fault diagnosis. 

Introduction 
Structural health monitoring (SHM) is a non-destructive 
evaluation technique employing data recorded by sensors 
(“sensor data”) to assess structural conditions (Law et al., 
2014). SHM aims to improve safety and cost efficiency in 
structural maintenance through filling gaps of periodic 
visual inspections (Cawley, 2018). Hardware or software 
errors, exposure to harsh environmental conditions, 
degradation, and signal interferences may lead to 
malfunctions of sensors (“faulty sensors”) in SHM 
systems (Zhang et al., 2018). Consequently, faulty sensors 
may compromise the outcomes of SHM systems (Steiner 
et al., 2019). 

In SHM systems, sensor fault types include bias, drift, 
gain, precision degradation, complete failure (constant or 
with noise), and outliers (Kullaa et al., 2013). Fault 
diagnosis approaches for SHM systems have been 
proposed based on either physical or analytical 
redundancy (Frank, 1990). Physical redundancy entails 
installing additional, i.e. “redundant”, sensors and 
detecting faults based on sensor data comparisons. 
However, the high cost, power consumption, and 
maintenance associated with physical redundancy have 
been the primary motivation for developing analytical 
redundancy approaches (Smarsly & Petryna, 2014). In 
general, analytical redundancy employs mathematical 
models to characterize a system, leveraging the inherent 
redundancy present in the sensor data (Al-Zuriqat et al., 
2023). Fault diagnosis using analytical redundancy 
comprises four steps (Patton, 1990): 

● Fault detection  
● Fault isolation 
● Fault identification  
● Fault accommodation 

In the fault detection step, residuals between sensor data 
and corresponding “virtual outputs”, derived from 
mathematical models, are evaluated using threshold logic 

or hypothesis testing (Isermann & Balle, 1997). In case 
faults are detected, fault isolation involves determining 
the locations of the faulty sensors. To gain insights into 
the underlying causes of sensor faults and define 
strategies for compensating for errors induced by sensor 
faults, the type or nature of the faults are determined in 
the fault identification (FI) step. Finally, in the fault 
accommodation step, data recorded by the faulty sensor is 
reconstructed using virtual outputs of the mathematical 
models. 

Existing fault diagnosis approaches have mainly focused 
on detecting, isolating, and accommodating sensor faults. 
Rao et al. (2007) has presented a concept, originally 
proposed by Kramer (1992), introducing a null-subspace-
based approach for sensor fault detection and isolation, 
combined with autoassociative neural networks for fault 
accommodation. Smarsly & Law (2014) have proposed a 
decentralized fault detection and isolation approach in 
wireless SHM systems employing artificial neural 
networks. The approach has been extended from the time 
domain to the frequency domain and has also accounted 
for the presence of structural damage (Dragos & Smarsly, 
2016). Al-Zuriqat et al. (2023) have introduced an 
adaptive sensor fault detection, isolation, and 
accommodation approach for SHM systems using 
feedforward artificial neural networks with 
backpropagation, considering single sensor faults 
occurring simultaneously in individual sensors. Liu et al. 
(2022) have used stacked gated recurrent unit neural 
networks to detect, isolate and accommodate sensor 
faults, and global-local logic to differentiate sensor faults 
from structural damage. 

Among fault diagnosis approaches that include FI, Fritz et 
al. (2022) have proposed an analytical-redundancy 
approach, which integrates feedforward artificial neural 
networks and convolutional neural networks to detect, 
isolate, identify, and accommodate sensor faults. 
Additionally, other approaches, based on generalized 
likelihood ratio (Li et al., 2019), on generalized quasi-
natural analogy test principle (Yan et al., 2020), and on 
set theory and support vector machine (Yu et al., 2014), 
have also addressed the FI step. However, in the 
aforementioned studies, only single sensor faults have 
been considered, i.e. one sensor fault type within each 
individual sensor. Moreover, not all sensor fault types 
have been addressed. For example, outliers (Fritz et al. 
2022; Li et al., 2019), drift, precision degradation, and 
complete failure (Yan et al., 2020) have not been 
included. 

Sensors in SHM systems may experience combinations of 
faults, i.e. faults of different types occurring 
simultaneously within an individual sensor (hereinafter 
termed “composite sensor faults”). The plausibility of 



composite sensor faults occurrence in SHM systems has 
been corroborated in Li et al. (2022), in which composite 
sensor faults have been observed during experimentation, 
specifically gain and drift in one sensor. 

In summary, despite the importance of FI in gaining 
insights into underlying causes of sensor faults within 
SHM systems, current FI approaches often fail to account 
for composite sensor faults, which may manifest in real-
world SHM systems (Li et al., 2022). In this paper, an 
approach towards identification of composite sensor 
faults (ICSF) is proposed. Sensor data with artificially 
injected composite sensor faults is used to train long 
short-term memory (LSTM) classification networks, 
addressing composite sensor faults. 

The remainder of the paper is organized as follows: First, 
composite sensor faults in SHM systems are elucidated. 
Then, a description of the ICSF approach is introduced. 
Next, the implementation and validation of the ICSF 
approach are presented, and the results are discussed. 
Finally, the paper ends with a summary and conclusions, 
and an outlook on future research is provided. 

Composite sensor faults 
Sensor fault types manifest into errors, which have 
distinct footprints on sensor data. For example, a bias is 
represented by a constant deviation of the sensor data 
from the values that should be measured (“actual values”, 
e.g. structural responses or environmental parameters). A 
drift is characterized by the gradual deviation of sensor 
data from the actual values over time. A gain occurs when 
sensor data is systematically scaled by a constant value. 
Precision degradation is caused by the contamination of 
sensor data with noise. A complete failure is observed as 
sensor data consisting of a constant value (“complete 
failure constant”) or noise (“complete failure with noise”), 
regardless of changes occurring in the actual values. 
Finally, an outlier manifests as a discontinuous 
observation in the sensor data that deviates from the actual 
values at isolated time instances.  
The aforementioned sensor fault types are usually 
addressed as single sensor faults, occurring in individual 
sensors. However, as mentioned previously, sensors in 
real-world SHM systems may experience composite 
sensor faults, an example of which, consisting of drift and 
an outlier, is illustrated in Figure 1. As a result, full fault 
identification needs to address both single sensor faults 
and composite sensor faults. The description of the ICSF 
approach, including two phases, each comprising several 
steps, are presented in the following section. 

 
Figure 1: Illustration of a composite sensor fault: (a) a single 
sensor fault with drift, (b) a single sensor fault with an outlier, 

and (c) a composite sensor fault consisting of drift and an outlier 

Description of the ICSF approach  
In this section, the ICSF approach is presented, 
comprising two phases, (i) preparing the training dataset, 
and (ii) developing the classification models. A flowchart 
describing the workflow of the ICSF approach is shown 
in Figure 2. 

Phase 1: Preparing the training dataset 

1. Sensor data is recorded by SHM systems within the 
so-called “data collection period”. The total number 
of data points p recorded by each sensor in the data 
collection period is representative of the normal 
operation of the structure. 

2. A correlation analysis is conducted on the sensor 
data to unveil the number of correlated sensors k 
within a SHM system. Each sensor in the set of 
correlated sensors is denoted with i (i = 1, …, k). 
Data recorded by all correlated sensors f1k is stored 
in matrix A. As result, matrix A has a length equal 
to the number of data points p, and a width equal to 
the number of correlated sensors k, as shown in 
Equation 1. 
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Figure 2: Flowchart of the ICSF approach 

3. A total of k input and output datasets are created to 
train classification models in a later step. The 
sensor data in matrix A are copied into input dataset 
i (i = 1, …, k), and composite sensor faults are 
artificially injected into the vector fi, i.e. in sensor 
data recorded by sensor i. Injected sensor fault types 
are stored in the classification output dataset i. As a 
result, the input dataset i contains clean data from 
sensors (1, 2, …, i–1, i+1, …k), and sensor data 
from sensor i with composite sensor faults. 

4. Data in the input dataset i is normalized using a 
minimum-maximum normalization method, shown 
in Equation 2, to avoid overfitting issues while 

training the classification models. Then, the 
normalized input dataset i, as well as the output 
dataset i are split into training dataset (70%), 
validation dataset (15%), and testing dataset (15%). 
In Equation 2, x represents an arbitrary 
measurement in the sensor data, while xmin and xmax 
denote the minimum and maximum measurements 
in the sensor data, respectively. The variable 
xnormalized corresponds to the normalized value. Both 
normalization parameters xmin and xmax used for the 
input dataset i are saved to be applied to new sensor 
data that is fed to the classification model Mi after 
training. 
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Phase 2: Developing the classification models 

1. The initial architecture of the LSTM classification 
network is defined. The LSTM classification 
network has an input layer, hidden layers, and an 
output layer. In Figure 3, the general architecture of 
the LSTM classification network is illustrated. The 
input layer is a sequence input layer with a length 
equal to the number of correlated sensors k. The 
hidden layers include successions of LSTM layers 
and “dropout” layers. In each LSTM layer, memory 
cells and a set of gates regulate the flow of data. 
This architecture enables LSTM layers to capture 
and retain long-term dependencies in sequential 
data, making them particularly effective for tasks 
such as sensor data analysis. In each dropout layer, 
a probability of dropout is defined representing the 
likelihood (set between 0 and 1) of randomly 
neglecting measurements passed through the 
LSTM layer as means of preventing overfitting. 
The number of LSTM layers as well as the number 
of dropout layers may vary based on the model 
accuracy, which is determined in a later step. The 
output layers contain a fully-connected layer, a 
Softmax layer, and a classification layer. The fully-
connected layer connects every neuron of the last 
hidden layer to the neurons of the output layer, 
representing the number of classes in the 
classification problem. The Softmax layer is used 
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Figure 3: General architecture of the LSTM classification network 



between the fully connected layer and the 
classification layer to convert raw logits into 
probability distributions, facilitating 
interpretability, backpropagation, and optimal 
training. Finally, the classification layer contains all 
classes of the classification problem, more 
specifically, the number of sensor fault types c to be 
included in the FI step. The number of sensor faults 
c, is calculated using Equation 3, and depends on: 
(i) the number of single sensor faults m included in 
each composite sensor fault, and (ii) the total 
number of single sensor faults n included in all 
composite sensor faults. 
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2. One classification model Mi for each correlated 
sensor i (i = 1, ..., k) is created by training an LSTM 
using the training dataset i. During training, the 
training dataset i is fed sequentially (in “batches”) 
to the LSTM classification network, i.e. each batch 
of the normalized input dataset is fed to the input 
layer and the corresponding classes of the output 
dataset are fed to the output layer. The training 
consists of updating weighted connections between 
neurons, until the probabilities of the Softmax layer 
reach a predefined level of accuracy. Thereupon, 
the classification model Mi is created, capable of 
recognizing patterns and features in the input 
dataset i and classifying the sensor data into the 
corresponding composite sensor fault type. The 
validation dataset is used to fine-tune the 
hyperparameters, and prevent overfitting during 
training. 

3. Upon completing training and validating, the 
accuracy of model Mi is obtained using the testing 
dataset. For model Mi to be accepted, the 
classification accuracy must lie above a FI 
threshold γ. The FI threshold γ is derived following 
the same rationale as the fault detection threshold γ 
in previous related research (Al-Zuriqat et al., 
2023). Equation 4 introduces the formula to 
calculate the accuracy (Acc) of the classification 
model Mi. 
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4. Finally, if the accuracy of model Mi is satisfactory, 
the model is saved to identify faults of sensor i (i = 
1, …, k). However, if the accuracy of model Mi is 
not satisfactory, a different architecture of the 
LSTM classification network is defined and a new 
model Mi is trained (back to step 1 of phase 2).   

The implementation and validation of the ICSF approach 
using sensor data from a real-world SHM system installed 
on a pedestrian bridge is presented in the next section. 

Implementation and validation of the ICSF 
approach  
This section describes the implementation and validation 
of the ICSF approach. To implement the ICSF approach, 
the programming language MATLAB is utilized to 
analyze the sensor data, inject faults, and train the 
classification models. The validation test is carried out 
using sensor data (acceleration measurements) from a 
real-world SHM system installed on a pedestrian bridge. 
First, the pedestrian bridge and the SHM system are 
presented. Then, the ICSF approach is applied using the 
acceleration measurements recorded by the real-world 
SHM system.  

Description of the pedestrian bridge and the SHM 
system 

The pedestrian bridge, located in Evosmos, Thessaloniki, 
Greece, has been a subject of research since the 
construction in 2016. (Dragos et al., 2020; Smarsly et al., 
2022a; and Smarsly et al., 2022b). The pedestrian bridge, 
is a composite concrete-steel structure, in which a steel 
structure supports a reinforced-concrete deck. The 
dimensions of the reinforced-concrete deck are 35.00 m 
(length) and 4.60 m (width).  

Figure 4 illustrates the top view of the pedestrian bridge 
and the locations of the accelerometers used in the 
validation test. The SHM system comprises four 
accelerometers (i.e. S1, S2, S3, and S4), which have been 
previously tested and found to be free of faults. The 
accelerometers are equally distributed along the central 
axis spanning the length of the bridge, spaced seven 
meters apart from each other. 

Figure 4: Top view of the pedestrian bridge with the locations of the accelerometers 



Description of the validation test 

For preparing the training dataset (phase 1), acceleration 
measurements are recorded by the four accelerometers 
(S1, S2, S3, and S4) over data collection period of 90 
minutes at a sampling rate of 128 Hz. The total number of 
data points p = 692,628 is recorded by each 
accelerometer.  

Next, correlations within the acceleration measurements 
are investigated via a correlation analysis. A strong 
correlation has been exposed by the Pearson correlation 
coefficient among all four accelerometers, i.e. k = 4. 
Notably, the lowest correlation coefficient 0.937 has been 
observed between sensors S1 and S4. Then, the 
acceleration measurements, recorded by all four 
correlated accelerometers f1k = 4, are stored in matrix 
A692628×4. 

To determine the sensor fault types to be included in the 
validation test, as well as the size of the classification 
layer in a later step, a total of five single faults (n = 5) are 
considered, i.e. bias, drift, gain, precision degradation and 
outliers. Complete failure, either constant with noise), 
entails sensors essentially ceasing to operate and can, 
therefore, hardly be combined with other single sensor 
faults into composite sensor faults. Combinations of two 
single faults in the same sensor (m = 2) are considered, 
e.g. drift and outlier at the same time within an individual 
sensor. As a result, using Equation 3, the total number of 
composite sensor faults is c (n, m) = 10. Table 1 provides 
an overview of the composite sensor faults considered in 
the validation test.   
 

Table 1: Sensor fault types considered in the validation test 

No. Composite sensor fault 

1 Bias + Drift 

2 Bias + Gain 

3 Bias + Precision degradation 

4 Bias + Outliers 

5 Drift + Gain 

6 Drift + Precision degradation 

7 Drift + Outliers 

8 Gain + Precision degradation 

9 Gain + Outliers 

10 
Precision degradation + 

Outliers 

Acceleration measurements stored in matrix A692628×4 are 
copied into four input datasets. Each input dataset is 
divided equally into 10 subsets, for which each sensor 
fault type shown in Table 1 is artificially injected. The 
classes of the composite sensor faults injected into the 

input dataset i (i = 1, …, 4) is stored in the output dataset 
i (i = 1, …, 4).  

Next, acceleration measurements, stored in the input 
dataset i, are normalized using the minimum-maximum 
normalization method shown in Equation 2. The 
normalized input dataset i is split into 70 % training 
dataset (484,838 data points), 15 % validation dataset 
(103,894 data points), and 15 % testing data (103,894 data 
points). Both normalization parameters xmin and xmax used 
for the input dataset i during training are saved, to be 
applied to new sensor data that is fed to the classification 
model Mi after training.  

The initial architecture for the LSTM classification 
network is defined, with the input layer consisting in a 
sequence input layer with length k = 4. The output layer 
consists of a fully-connected layer, a Softmax layer, and a 
classification layer with 10 classes, where each class 
present a composite sensor fault from Table 1. Three 
hidden layers are defined, each comprising a LSTM layer 
followed by a dropout layer. To avoid overfitting during 
training, the probability of all dropout layers has been set 
to 20 %. 

A total of four classification models, equal to the number 
of the correlated sensors (k = 4), are created by training an 
equal number of LSTM classification networks. Each 
model Mi classifies sensor fault types of sensor i, using 
acceleration measurements from the four correlated 
sensors of the SHM system as input data. A total training 
time of 69 minutes for each LSTM classification model is 
recorded. 

Based on Equation 4, the accuracy of the models is 
evaluated using the testing dataset (103,894 data points). 
Using a FI threshold γ = 0.85, a model with an accuracy 
above 85 % is considered acceptable (Al-Zuriqat et al., 
2023). The lowest model accuracy has been observed in 
model M2, with an accuracy of 90.3 %. 

Finally, the fourth step involves saving all trained 
classification models M1, M2, M3, and M4 to identify 
sensor fault types for sensor S1, S2, S3, and S4, 
respectively. The trained classification models are tested 
using acceleration measurements newly recorded by the 
SHM system, as presented and discussed in the following 
section.  

Results and discussion 
This section presents and discusses the results of applying 
the classification models (M1, M2, M3, and M4), obtained 
by the ICSF approach, to newly recorded acceleration 
measurements. The acceleration measurements used in 
the validation test have been recorded by the real-world 
SHM system and correspond to a data collection period of 
30 minutes with a sampling rate of 128 Hz. The total 
number of data points recorded by each of the 
accelerometers is p = 230,876 data points. Subsequently, 
all composite sensor faults introduced in Table 1 have 
been randomly injected into the newly recorded 
acceleration measurements. Table 2 presents the results of 



testing the classification models. To determine the 
accuracy of the classification models, the number of 
sensor faults identified is compared to the number of 
sensor faults injected in the testing dataset.  
 

Table 2: Fault identification results of artificially injected 
sensor fault types including composite faults 

Fault  
type 

Sensor 
Injected 
faults 

Correctly 
identified 

faults 
Acc 

Bias + Drift S4 13,607 13,600 99.9 % 

Bias + Gain S1 13,522 13,411 99.1 % 

Bias + 
Precision 

degradation 
S2 13,720 13,632 99.3 % 

Bias + 
Outliers 

S3 5,378 4692 87.2 % 

Drift + Gain S4 13,627 12859 94.3 % 

Drift + 
Precision 

degradation 
S1 13,390 12,944 96.6 % 

Drift + 
Outliers 

S2 5,461 261 4.7 % 

Gain + 
Precision 

degradation 
S3 13,638 13,373 98.0 % 

Gain + 
Outliers 

S4 5,556 4,871 87.6 % 

Precision 
degradation + 

Outliers 
S1 5,398 4,126 76.4 % 

Total - 103,297 93,769 90.7 % 

As presented in Table 2, the FI capabilities of models M1, 
M2, M3, and M4 have been demonstrated using the newly 
recorded acceleration measurements with artificially 
injected faults. Out of 103,279 faults injected into the 
newly recorded acceleration measurements, 93,769 
sensor fault types have been correctly identified, 
representing a total accuracy rate of 90.7 %.  

Upon delving deeper into the results of the identification 
of composite sensor faults, it is noticeable that the 
classification model achieved the highest accuracy in 
identifying the composite sensor fault “Bias + Drift” with 
an accuracy rate of 99.9%. Conversely, a considerably 
low accuracy rate was observed in the identification of the 
composite sensor fault “Drift + Outliers” at 4.8%. The low 
accuracy of identifying the composite fault type “Drift + 
Outliers” may be attributed to the subtle patterns of 
outliers, as they correspond to point singularities in a 
continuous signal, which may be hard to be identified as 
features by the LSTM classification network.  

Summary and conclusions 
Fault diagnosis using analytical redundancy, building on 
mathematical models, has been gaining increasing interest 

in SHM, owing to the low cost when avoiding redundant 
sensors, as compared to traditional physical redundancy 
approaches. Fault diagnosis encompasses fault detection, 
isolation, identification, and accommodation. Despite the 
importance of FI in gaining insights into underlying 
causes of sensor faults within SHM systems, current FI 
approaches often fail to account for composite sensor 
faults, which may manifest in real-world SHM systems.  

This paper has presented an approach towards 
identification of composite sensor faults (ICSF). Sensor 
data with artificially injected composite sensor faults has 
been used to train LSTM classification networks, 
addressing composite sensor faults. The ICSF approach 
has been implemented using the programing language 
MATLAB, and validated using acceleration 
measurements recorded by a real-world SHM system. 
From the results, it is concluded that the ISCF approach 
has been proven capable of identifying composite sensor 
faults, thus enhancing the reliability and accuracy of fault 
diagnosis in SHM systems.  

Future work may involve coupling the ICSF approach 
with other existing fault detection, isolation, and 
accommodation approaches to establish a comprehensive 
fault diagnosis concept. Furthermore, the ICSF approach 
may be embedded into wireless sensor nodes to identify 
sensor faults on board the sensor nodes within 
decentralized SHM systems. 
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