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Abstract 

Lightweight bridges are subjected to moving loads 

(vehicular traffic), with vehicular masses typically being 

comparable to structural masses. Moving loads are thus 

regarded as “traveling masses”, resulting in complex 

dynamic behavior, which is hardly covered by 

conventional damage detection strategies. This paper 

presents a concept towards damage detection in 

lightweight bridges with traveling masses using machine 

learning (ML). Specifically, a ML model for classifying 

structural damage is trained, using simulations, and 

applied using real-world structural response data. 

Preliminary tests of the proposed concept validate the 

power of the ML model in identifying structural damage, 

despite the non-stationarity of the problem. 

Introduction 

Research on advancing material technologies to develop 

high-strength materials has been conducted since the 

second half of the 20th century (Flaga, 2000). The 

construction industry has been increasingly leveraging 

high-strength materials in an attempt to meet structural 

design requirements while reducing material usage 

(Zhang et al., 2019). Furthermore, in bridge design and 

construction, practitioners frequently seek to reduce the 

size of structural elements, which, apart from the obvious 

financial benefit, also helps meet practical and aesthetical 

requirements.  

High-strength materials, however, frequently result in 

lightweight flexible structures, which are prone to heavy 

oscillations. A notable example is the case of the 

Millennium Bridge in London, which exhibited large 

oscillations, due to the large crowds drawn during 

opening in 2000 (Dallard et al., 2001). Consequently, 

material reduction in bridges requires care to avoid 

unanticipated oscillations. Moreover, placing the 

discussion on bridge oscillations under operational 

conditions, bridges are expected to withstand oscillations 

induced by operational loads, such as vehicular traffic.  

At a first glance, the problem of vehicles traversing bridge 

decks may be described as a “moving load” problem, the 

dynamics of which differ from conventional structural 

dynamics, in that the structural response is affected by the 

velocity of the vehicles (Firus, 2023). In lightweight 

bridges, however, vehicular masses may be comparable to 

structural masses (particularly in railway bridges) and are 

regarded as “traveling masses”, resulting in a complex 

non-stationary problem. With respect to damage 

detection, which is the focal point of structural 

maintenance, conventional damage detection strategies 

hardly address the traveling-mass problem. Experimental 

techniques as well as structural health monitoring (SHM) 

strategies typically rely on data analysis methods suitable 

for stationary problems, e.g. identifying the frequency 

content of structural response data using the Fourier 

transform (Dragos et al., 2024). Studies on moving loads 

on beams also fail to capture the damage-detection 

traveling-mass problem in its totality. 

Approaches describing the dynamic response of beam 

structures under traveling masses have been widespread 

in literature. Examples range from as far back as the late 

1990s, with the work of Siddiqui et al. (1998) who 

investigated the motion of a cantilever Euler-Bernoulli 

beam under the effect of a moving mass-spring system, to 

recent works, such as the approach reported by Meher et 

al. (2019), who have used Green’s function to describe the 

response of a beam traversed by a traveling mass. 

Furthermore, the vibration control of beams, considering 

vehicle-bridge interaction, has been investigated by Pi & 

Ouyang (2016), and the critical speed of a traveling mass, 

affecting the behavior of the coupled mass-beam system, 

has been the focus of work by Dehestani et al. (2009). A 

recent work, reported by Abu-Alshaikh et al. (2020), has 

focused on obtaining analytical responses of a 

functionally graded beam with a traveling mass using 

Caputo-Fabrizio fractional derivative models.  

Nevertheless, damage detection on beams with traveling 

masses has received scarce attention. An early approach 

has been proposed by Billelo & Bergman (2004), basing 

damage detection on comparing the displacement 

histories obtained from an intact bridge model before and 

after inducing damage. In recent work, Cicirello (2019) 

has studied the response bounds of Euler-Bernoulli beams 

with structural damage from a theoretical standpoint. 

Moreover, Zhan et al. (2021), have used wavelet 

transform coefficients of experimentally derived modal 

parameters for indirect damage detection. Despite the 

solid background offered by the aforementioned 

approaches, damage detection relies on either 

displacement measurements, which, although frequently 

used in experimental techniques, are uncommon in state-

of-the-art SHM systems employed for structural 

maintenance, or on the accuracy of experimentally 

derived modal parameters, which is hardly guaranteed in 

non-stationary problems. As a result, damage detection on 

beams with traveling masses stands to benefit from an 

approach compatible with measurements typically 

collected in modern SHM systems (e.g. acceleration 

response data) and with state-of-the-art computational 

tools. 



The non-stationarity of the traveling-mass problem calls 

for advanced data analysis methods, drawing from the 

field of artificial intelligence and its subset machine 

learning (ML), which has been employed in civil 

engineering applications, such as in fault diagnosis of 

SHM systems (Al-Zuriqat et al., 2023). In this direction, 

this paper presents a concept for damage detection on 

lightweight bridges with traveling masses, using a ML 

model for classifying acceleration response data into 

structural damage scenarios. The reasoning behind using 

ML is that damage patterns manifested in acceleration 

response data may be either too subtle to discern or 

obscured in frequency-domain representations of the data, 

due to the non-stationarity of the problem. The ML 

classification model, used in this study, is a convolutional 

neural network (CNN), which is trained with “labeled” 

acceleration response data, i.e. data corresponding to 

predefined structural condition scenarios, obtained from 

simulations using a well-calibrated analytical model. 

Upon completing training, classification is performed 

using real-world acceleration response data. The proposed 

concept is validated in preliminary laboratory tests, 

showcasing the capability of the CNN in identifying 

structural damage, as represented by partial loss of fixity 

at one support of a steel beam. The remainder of the paper 

includes a presentation of the concept, followed by the 

validation tests. The paper ends with a summary and 

conclusions and an outlook on future research.  

Damage detection in lightweight bridges 

with traveling masses 

The cornerstone of the proposed concept is the coupling 

between analytical modeling and simulation with ML. It 

is therefore clear that creating a well-calibrated analytical 

model for producing the acceleration response data for 

training the CNN is particularly important. As such, the 

description of the concept in this section starts with a brief 

discussion on the analytical modeling and simulation 

method employed for producing acceleration response 

data, followed by a presentation of the CNN training, 

including the preprocessing of the acceleration response 

data and the functionality of the CNN. 

Analytical modeling of the traveling-mass problem 

In its simplest form, a lightweight bridge with a traveling 

mass can be modeled as a continuous Euler-Bernoulli 

beam, as shown in Figure 1. The equation of motion of the 

beam accounts for inertia forces both of the vibrating 

beam and of the travelling mass (Dadoulis & Manolis, 

2023): 

 

       , , , cρAw x t cw x t EIw x t f δ x v t   && & . (1) 

 

In Equation (1), ρ is the material density, A is the cross-

section area of the beam, E is the modulus of elasticity, I 

is the moment of inertia of the beam in the vertical 

direction, c is the damping coefficient, w is the vertical 

displacement of the neutral axis of the beam, δ is the Dirac 

delta, x represents the spatial coordinate in the 

longitudinal direction of the beam, and t is time. The 

functional fc > 0 represents the contact force between the 

traveling mass and the beam, and |v| is the speed of the 

traveling mass. Finally, ẇ = ∂w/∂t, ẅ = ∂2w/∂t2, and 

wʹʹʹʹ = ∂4w/∂x4. 
 

 
Figure 1: Bernoulli-Euler beam with traveling mass. 

From Equation (1), it is evident that the factor that 

differentiates the traveling-mass problem from a regular 

Euler-Bernoulli-beam equation of motion is the contact 

force fc. To estimate fc, the equilibrium at the contact point 

of the traveling mass with the beam is considered. First, 

the static equilibrium is expressed as the total vertical 

displacement wT, which is a summation of the vertical 

displacement of the beam and a component representing 

the surface roughness r(x) = r(|v|t): 
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Furthermore, the dynamic equilibrium is provided by the 

following expression: 
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where g is the gravitational acceleration. By solving 

Equations (2) and (3) with respect to fc and by substituting 

fc into Equation (1), the equation of motion is converted 

into: 
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In Equation (4), the time and spatial coordinate of w have 

been dropped for simplicity. It is noted that the right-hand 

side of Equation (4) includes total derivatives, which are 

expanded as follows: 
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In Equation (5), the second term corresponds to the 

Coriolis acceleration, and the third term is the centrifugal 

acceleration, which is irrelevant to the problem being 

studied and is therefore neglected. Using Equations (5) 

and (6), Equation (4) becomes: 
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Equation (7) is solved via modal analysis, for which the 

vertical displacement is analyzed into a spatial component 

and a temporal component: 
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where φn(x) is nth “eigenfunction”, representing the mode 

of vibration in the form of a wave function, and qn(t) is the 

nth “generalized” coordinate function, which 

characterizes the temporal variation of the vibration. From 

Equation (8), it is clear that the complexity of the solution 

depends on the number of eigenfunctions (p) considered. 

For regular structures in structural dynamics, it is 

common to consider only a few eigenfunctions, which are 

capable of capturing the structural dynamic behavior. The 

nth eigenfunction is given by: 
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where L is the beam length. Eigenfunctions follow the 

orthogonality condition: 
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where δij is the Kronecker delta. As a result, by 

substituting Equation (8) into Equation (7) for p 

eigenfunctions arranged in vector format w = φ(x)q(t), 

(φ(x) = [φ1(x),φ2(x),…,φp(x)], q(t) = [q1(t),q2(t),…,qp(t)]T), 

pre-multiplying with φ(x)T, integrating over L, and 

exploiting the Dirac delta property: 
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proven in Dadoulis & Manolis (2022), the equation of 

motion is recast into a p×p system of differential 

equations of the following format: 
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In Equation (12), ξn is the critical damping ratio of the nth 

eigenfunction, and ωn is the respective natural frequency, 

computed as follows: 
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For producing the structural response to the traveling-

mass problem, the generalized coordinate functions q(t) 

need to be computed. To this end, Equation (12), which 

represents a set of ordinary differential equations of 

second order, is converted into a set of first-order ordinary 

differential equations, using the state-space formulation: 
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The notations in Equation (14) are explained as follows: 
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Assuming discrete time, Equation (14) is solved for every 

time instance k by performing eigenvalue analysis to 

matrix (-Ak)-1Bk, which is non-symmetric and yields a 

matrix of complex eigenvalues Λk and eigenvectors 

matrix Ψ. The eigenvalues matrix is given by: 
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Using Equation (16), the solution of Equation (14) at time 

instance k is: 
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The generalized coordinate functions are used together 

with the eigenfunctions to reconstruct the vertical 

displacement functions w(x,t) using Equation (8). In turn, 

the vertical displacement functions are used as to produce 

the acceleration response data using Equation (14) 

(hereinafter termed “simulation data”), which are 

processed to be used for training the CNN. 

Training of a convolutional neural network for 

damage detection 

In theory, the simulation data could be used “as is” (i.e. in 

time-history format) as input to the CNN, since simulation 

data is relatively “clean” from noise and random 

components. However, upon completing training, the 



CNN is expected to be applicable with real-world 

acceleration response data, in which the presence of 

spurious factors, such as noise and random components, 

is likely. As argued in Fritz et al. (2022), to reduce the 

effect of spurious factors and expose features in the 

simulation data, data preprocessing is necessary. 

Considering the non-stationarity of the traveling-mass 

problem, common preprocessing methods, producing 

fixed-window frequency-domain representations are 

hardly informative. Instead, preprocessing that depicts the 

coupled time-frequency content of the simulation data is 

necessary. Furthermore, as evidenced in Equation (14), 

the eigenvalues of the coupled traveling-mass-beam 

system change at every time instance k. As a result, a 

preprocessing method that enables tracking the evolution 

of eigenvalues is used, namely the Gabor transform (Qian 

& Chen, 1993): 
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In Equation (18), Gw is the Gabor coefficient, κ is the 

index of the discrete frequency bin of frequency f, 

considering a discrete set of simulation data of length N, 

sampled at frequency fs (fs = 1/Δt). The “Gabor” window 

function is denoted as zj and could be any window 

function, such as the Gaussian function or the Hann 

window. Finally, S is a scaling factor. 

Gabor coefficients are typically illustrated as colormap 

images. An exemplary illustration of a Gabor-transform 

image of simulation data representing acceleration of an 

Euler-Bernoulli beam is given in Figure 2. 
 

 
Figure 2: Gabor transform depiction of simulation data. 

Upon producing the Gabor transform images, the damage 

detection problem is reduced to a classification problem, 

which is solved by the CNN. As shown Figure 3, a typical 

CNN consists of one input layer, a succession of 

convolution layers and pooling layers, (at least) one fully-

connected layer, one dropout layer, and one output 

(classification) layer. Each Gabor transform image is 

passed in red-green-blue (RGB) format of size NI×NI×3 

from the input layer to the first convolution layer. 

Thereupon, the image is subjected to feature extraction, 

performed by progressively “sliding” square matrix 

“kernels” of size nI×nI×3 (generally, nI << NI) over the 

image and by convolving RGB values of image areas (of 

dimensions matching the kernel size) with the kernel 

matrix elements. The outcome of each convolution layer 

is a so-called “feature map”, consisting of convolutional 

products, and each product is fed to an activation function, 

which introduces non-linearity to the CNN, necessary for 

solving non-trivial problems. The outcomes of the 

activation function (“activations”) are propagated to the 

pooling layer, which applies a sliding-window operation 

on the activations, typically computing either the average 

of each sliding window or the maximum value, to reduce 

the dimensionality of the activations. The last pooling 

layer is succeeded by a fully-connected layer, which 

comprises neurons connected to every outcome of the 

pooling layer. The fully-connected layer is followed by a 

dropout layer, in which a predefined percentage of 

features are “dropped” (i.e. ignored) to prevent 

overfitting. Finally, the dropout layer is connected to the 

output layer, which holds the classes. 
 

 
Figure 3: Layout of a typical CNN. 

To perform classification, the CNN is trained, i.e. the 

kernels are fine-tuned so that the prediction accuracy of 

the output layer exceeds a predefined threshold. The 

training is performed using a “labeled” set of Gabor 

transform images, i.e. images that correspond to known 

structural conditions, including images from the intact 

structure as well as images from damage scenarios, 

simulated via perturbing structural parameters of the 

analytical model. The labeled set is divided into a training 

set, a validation set, and a testing set. The training set is 

propagated sequentially (in “batches”) through the CNN, 

and the prediction error gradient, obtained from the output 

layer is back-propagated to update the kernels using an 

optimization algorithm, such as gradient descent, and a 

learning rate, which controls the fine-tuning rate of the 

kernels. Each cycle of propagation and back-propagation 

of a batch is a training iteration, and once all the images 

in the training set are used, one epoch is completed. The 

validation set is passed through the CNN periodically 

during training, after a predefined number of iterations. 

The purpose of validation is to monitor the prediction 

accuracy improvement of the CNN with an independent 

set of images so as to avoid overfitting the CNN to the 

training set. The testing set is passed through the CNN at 

the end of training, i.e. upon achieving the predefined 

prediction accuracy, to check the CNN performance. 

A proof-of-concept implementation and validation of the 

proposed concept, including the analytical modeling of a 

beam structure, the data preprocessing and the training of 



a CNN for damage classification are presented in the next 

section. 

Implementation and validation 

The prototype implementation and validation of the 

proposed concept involve defining software tools for 

simulations and CNN training, as well as devising a 

laboratory proof-of-concept test. In this section, first the 

implementation is discussed, followed by the presentation 

of the validation test and a discussion of the results. 

Implementation 

The first part of the implementation consists in developing 

an algorithm for analytical modeling and data pre-

processing, based on Equations (1)-(18). The algorithm is 

written in the Python programming language and consists 

of functions model_setup, eig_decomp and 

state_space_comp, dedicated to (i) computing the 

matrices A and B for every time instance k, (ii) 

performing eigenvalue analysis to matrix (-Ak)-1Bk, and 

(iii) to applying Equation (17) to compute the vector yk, 

respectively. A separate function, data_gen, is written to 

retrieve the displacement histories, using the 

eigenfunctions, and to compute the acceleration response 

data using Equation (14). Finally, the Gabor transform is 

realized by function gaborTrsf, and the corresponding 

images are produced.  

The second part of the implementation involves 

developing and training the CNN. Since, only a proof-of-

concept study is shown, an elaborate parametric analysis 

of the CNN performance and an optimal definition of the 

CNN architecture fall beyond the scope of this paper and 

will be investigated in future research. Instead, the 

MATLAB deep learning tool is leveraged, and a simple 

CNN architecture is devised, shown in Figure 4, adjusted 

to the input of Gabor transform images and to the number 

of classes being considered. 
 

 
Figure 4: The CNN architecture defined in this study. 

Validation tests 

The laboratory validation test is devised on a simply 

supported HEB100 steel beam, representing a downscaled 

model of a lightweight bridge traversed by a traveling 

mass, shown in Figure 5. The cross section of the beam 

has dimensions 100×100×10×6 (mm) (width × height × 

flange thickness × web thickness). The total length of the 

neutral axis of the beam is 5830 mm. The beam is part of 

an experimental setup, which includes adjustable struts 

that ensure that the beam is level. It is noted that the beam 

is supported only at its ends, i.e. the struts are not used as 

supports to the beam. The experimental setup also 

consists of pulleys that enable masses to move along the 

longitudinal axis of the beam and a motor that controls the 

mass speed. 
 

 
Figure 5: Experimental setup. 

An analytical model of the beam is developed and used 

for simulating the motion of a traveling mass across the 

beam. The modulus of elasticity and the material density 

are computed via preliminary laboratory tests as 

E = 198.5 GPa and ρ = 7.65·103 kg/m3, respectively. To 

produce a labeled set covering a sufficient part of the 

available solutions space, the mass value and speed are 

randomly perturbed to devise several simulation 

scenarios. Specifically, the mass (m) assumes values 

between 10 kg and 40 kg, and the speed (|v|) assumes 

values between 0.2 m/s and 0.5 m/s. With respect to the 

structural condition, two structural “states” are 

considered, one for the intact beam and one assuming loss 

of fixity at one support, i.e. by substituting the vertical 

support with a translational spring. A total of 500 

simulations are conducted for each state, computing 

acceleration response data at a distance equal to 9L/20 

from the beam end and at a sampling frequency of 

fs = 128 Hz. The reasoning behind avoiding the midspan 

of the beam is that the second eigenfunction, which 

contributes to the structural response, is characterized by 

an antisymmetric sinusoidal shape with a zero-crossing 

point at the midspan. Hence, collecting acceleration 

response data from the midspan would underestimate the 

contribution of the second eigenfunction. In turn, 500 

Gabor transform images per class are produced, forming 

the labeled set used for training the CNN. Exemplary 

illustrations of Gabor transform images for both states are 

given in Figures 6 and 7. The variation of the first two 

eigenfrequencies is marked for both structural states 

considered, as a result of the variable structural dynamic 

properties of the beam due to the motion of the mass. As 

can be seen in the figures, the loss of fixity at the support 



reduces the eigenfrequencies; however, the variation 

trend is similar in both states. 
 

 
Figure 6: Gabor transform for the intact beam  

(m = 23.3 kg, |v| = 0.351 m/s). 

 
Figure 7: Gabor transform for the damaged beam  

(m = 15 kg, |v| = 0.46 m/s). 

The training of the CNN is performed by first splitting the 

labeled set into 70% training set (350 images), 20% 

validation set (100 images), and 10% testing set (50 

images). During training, the “Adam” optimizer – a 

stochastic gradient-descent optimization algorithm – is 

employed for fine-tuning the kernels in each iteration 

(Kingma & Ba, 2015). The initial learning rate is set to 

0.001, the batch size is 30 images, and the validation 

frequency is defined at every 30 iterations. The total 

number of epochs is set equal to 10, and the learning rate 

is reduced at every epoch by a factor of 0.5. A high 

training accuracy of 98% is achieved after 122 iterations, 

and the accuracy of the validation set reaches 100% after 

30 iterations, as shown in Figure 8. 
 

 
Figure 8: Training and validation accuracy history. 

Prior to applying the CNN with acceleration response data 

from the experimental setup, the classification capability 

of the CNN is verified using the testing set. The 

classification test results are given below in the form of a 

“confusion” matrix: 
 

Table 1: Confusion matrix for the testing data set. 

 Intact Damaged 

Intact 50 0 

Damaged 0 50 

 

The results for the testing dataset corroborate the training 

accuracy, since every image of the testing dataset has been 

correctly classified. The next step of the validation test 

involves using the CNN for classifying Gabor transform 

images produced from real-world acceleration response 

data obtained from the experimental setup. The data is 

collected using a Lord Microstrain G-Link-200 wireless 

sensor node capable of measuring acceleration in 3 axes 

at ranges up to ±8g and at sampling frequencies up to 

4,096 Hz (Microstrain Sensing, 2020). Experiments are 

conducted for two structural states, matching the states 

used in the simulations, using 30 combinations of mass 

and speed values per state, as listed in Table 2. 
 

Table 2: Combinations of mass and speed values for the 

laboratory experiments. 

Nr. 
Mass 

m (kg) 

Speed |v| 

(m/s) 
Nr. 

Mass 

m (kg) 

Speed |v| 

(m/s) 

1 13 0.25 16 27 0.40 

2 13 0.30 17 27 0.45 

3 13 0.35 18 27 0.50 

4 13 0.40 19 18 0.25 

5 13 0.45 20 18 0.30 

6 13 0.50 21 18 0.35 

7 23 0.25 22 18 0.40 

8 23 0.30 23 18 0.45 

9 23 0.35 24 18 0.50 

10 23 0.40 25 38 0.25 

11 23 0.45 26 38 0.30 

12 23 0.50 27 38 0.35 

13 27 0.25 28 38 0.40 

14 27 0.30 29 38 0.45 

15 27 0.35 30 38 0.50 
 

The loss of fixity is realized by placing a spring between 

the beam end and its support. Acceleration response data 

is collected for every experiment close to the midspan of 

the beam, at a point located at 9L/20 from the beam end, 

as shown in Figure 5, at a sampling frequency of fs = 128 

Hz, as in the simulations. The acceleration response data 

from each experiment is used to produce a Gabor 

transform image, resulting in a set of 60 Gabor transform 

images to be fed to the CNN, an example of which is 

shown in Figure 9. 
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Figure 9: Gabor transform for experiment 10 (intact beam). 

The similarity between Figure 9 and Figures 6 and 7 is 

indicative of the satisfactory proximity between the 

analytical model and the experimental setup. The Gabor 

transform images are fed to the CNN and classified into 

the two classes, corresponding to the states considered. 

The results are summarized in the following confusion 

matrix: 
 

Table 3: Confusion matrix for the experiments. 

 Intact Damaged 

Intact 30 0 

Damaged 1 29 
 

The results of the experiments clearly highlight the 

capability of the CNN to correctly classify real-world 

acceleration response data. From the Gabor transform 

images of the intact beam, only one experiment is 

misclassified as “damaged”, while the respective images 

of the damaged beam are all correctly classified. 

Furthermore, the results serve as proof of the validity of 

the proposed concept and of the “transferability” of the 

CNN training from the domain of simulations to the real 

world. 

Summary and conclusions 

Damage detection on lightweight bridges with traveling 

masses is a non-stationary problem that is hardly covered 

by conventional methods, developed for experimental 

testing or structural health monitoring. In this context, this 

paper has presented a concept towards detecting damage 

on lightweight bridges, represented by Euler-Bernoulli 

beams. The proposed concept is based on analyzing the 

behavior of the beam using analytical modeling for a set 

of predefined damage scenarios and on using simulation-

derived acceleration response data to train a convolutional 

neural network to classify the data into the damage 

scenarios. Thereupon, the convolutional neural network is 

applied using real-world acceleration response data. 

The proposed concept has been validated in a proof-of-

concept laboratory test on a steel beam with a traveling 

mass, representing a downscaled model of a lightweight 

bridge. The results have shown that the convolutional 

neural network (i) can be trained with high accuracy using 

simulation-derived acceleration response data and (ii) can 

be transferred to real-world applications, assuming 

adequate calibration of the analytical model. Future work 

may focus on considering several damage scenarios, 

anticipated to occur over the lifetime of lightweight 

bridges, as well as on developing the proposed concept 

into a structural health monitoring approach. 
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