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Abstract 

 

Fault diagnosis (FD), comprising fault detection, isolation, identification and accommodation, enables 

structural health monitoring (SHM) systems to operate reliably by allowing timely rectification of sensor 

faults that may cause data corruption or loss. Although sensor fault identification is scarce in FD of 

SHM systems, recent FD methods have included fault identification assuming one sensor fault at a time. 

However, real-world SHM systems may include combined faults that simultaneously affect individual 

sensors. This paper presents a methodology for identifying combined sensor faults occurring 

simultaneously in individual sensors. To improve the quality of FD and comprehend the causes leading 

to sensor faults, the identification of combined sensor faults (ICSF) methodology is based on a formal 

classification of the types of combined sensor faults. Specifically, the ICSF methodology builds upon 

long short-term memory networks, i.e. a type of recurrent neural networks, used for classifying 

“sequences”, such as sets of acceleration measurements. The ICSF methodology is validated using real-

world acceleration measurements from an SHM system installed on a bridge, demonstrating the 

capability of the long short-term memory networks in identifying combined sensor faults, thus 

improving the quality of FD in SHM systems. Future research aims to decentralize the ICSF 

methodology and to reformulate the classification models in a mathematical form with an explanation 

interface, using explainable artificial intelligence, for increased transparency. 

 

Keywords: Identification of combined sensor faults (ICSF), sensor faults, fault diagnosis (FD), 

structural health monitoring (SHM), classification models, long short-term memory (LSTM) networks. 
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1. Introduction  

 

As a non-destructive evaluation technique, structural health monitoring (SHM) utilizes sensor data to 

evaluate and assess structural conditions (Law et al., 2014). SHM systems provide continuous updates 

on the structural conditions, ensuring both safety and cost-efficient maintenance of the structures being 

monitored (Liu and Nayak, 2012). SHM relies on sensors operating continuously over long periods of 

time to collect sensor data used for structural assessment (Dong and Catbas, 2021). Exposure to aging, 

degradation, and harsh environmental conditions may lead to sensor faults in SHM systems (Smarsly 

and Law, 2014). Undiagnosed sensor faults may cause system malfunctions and even system failures, 

highlighting the importance of fault diagnosis (FD) in SHM systems, which includes fault detection, 

isolation, identification, and accommodation (Patton, 1990). 

 

Fault detection aims to capture faults in SHM systems, fault isolation entails the localization of faults, 

fault identification involves determining fault types, and fault accommodation represents the 

compensation for the effects of faults. Sensor fault types, depending on the classification schema, 

include bias, drift, gain, precision degradation, complete failure (Dragos and Smarsly, 2016), and 

outliers (Dervilis et al., 2016). FD in SHM systems has been a matter of increasing importance in 

research over the past decades (Steiner et al., 2019), with most approaches being based on physical or 

analytical redundancy. In physical redundancy, “redundant” sensors are installed next to the sensors of 

an SHM system. Then, data recoded by the redundant sensors is compared with data recorded by the 

sensors of the SHM system, and the results of the comparison are used for fault diagnosis. To reduce 

the cost and power consumption associated with the relatively large number of sensors required in 

physical redundancy approaches, analytical redundancy uses mathematical models and redundant 

information inherent to the sensor data recorded by the SHM systems, for estimating “virtual” outputs. 

Faults are diagnosed on the basis of residuals between virtual outputs and actual sensor data, 

representing a concept that is well established in several engineering disciplines since many years 

(Isermann and Ballé, 1997). 

 

The emphasis of most FD approaches in the past decades centers around detecting, isolating, and 

accommodating sensor faults, without considering fault identification. Kullaa (2007) has introduced a 

detection, isolation, and accommodation method for sensor faults in SHM systems. A method has been 

proposed by Smarsly and Petryna (2014) for decentralized fault detection in wireless SHM systems, 

based on analytical redundancy in sensor data in the time domain, using multi-layer backpropagation 

feedforward neural networks. The aforementioned method has been extended to use frequency-domain 

data by Dragos et al. (2016). Huang et al. (2017) have proposed a method for detecting and isolating 

sensor faults in wireless SHM systems using weighted principal component analysis. A method based 

on support vector regression has been reported by Steiner et al. (2019) for decentralized detection and 
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isolation of sensor faults. Giordano et al. (2023) have explored incorporating sensor validation tools to 

provide information on the actual condition of sensors in SHM systems, extending the value of 

information from the Bayesian decision theory to quantify the information on the condition of the 

sensors to decision-making. Deng et al. (2023) have reported a review about sensor fault detection 

methods in SHM, providing the advantages, disadvantages, and scope of the method investigated. 

However, in the aforementioned studies fault identification has been overlooked, despite its importance 

for improving the quality of FD as well as for gaining insights into underlying causes of sensor faults in 

SHM systems. The main reason for neglecting fault identification is the need for complex models, which 

increase the computational burden of FD. Nevertheless, a few studies that consider fault identification 

in SHM have been reported. For example, Yu et al. (2014) have proposed rough set theory and a support 

vector machine (SVM) network for identifying sensor faults. Fritz et al. (2022) have introduced a fault 

identification method for SHM systems using wavelet-transformed sensor data, deployed as input to a 

convolutional neural network (CNN) that classifies single sensor faults. Oncescu and Cicirello (2022) 

have presented a classification model for sensor fault identification using natural language processing 

for extracting fault labels from failure reports, along with Naiive Bayes, SVM, and artificial neural 

networks for identifying faults in sensors exhibiting multiple fault types occurring at different time 

instances. A CNN-based 3-channel imagery approach has been reported by Shajihan et al. (2022) for 

sensor fault identification, comprising time histories, histograms, and probability density function 

representations of sensor data. Luo et al. (2023) have reported a structural damage identification 

approach considering sensor faults aiming to identify types of structural damage and sensor faults 

occurring separately or simultaneously. Mou et al. (2022) have introduced a 2-D CNN-based approach 

for fault identification in strain gauges for offshore SHM, considering bias, gain, and complete failure. 

Nong et al. (2023) have reported sensor fault identification using a multimodal deep neural network 

consisting of 1D and 2D CNN channels. Pan et al. (2023) have presented a transfer-learning-based 

approach for sensor fault identification using convolutional neural networks. In bridge SHM, Guo 

(2023) has proposed an approach for sensor fault identification combining 1D CNN with LSTM. Li et 

al. (2023a) have introduced sensor fault diagnosis strategy using a deep CNN model enhanced with data 

augmentation, based on two stages, a sensor fault detection stage followed by a sensor fault 

identification stage.  

 

Representing common ground among fault identification studies for SHM systems found in literature, 

single faults are assumed in the majority of the studies. However, SHM systems may exhibit “combined 

sensor faults”, i.e., combinations of two or more faults occurring simultaneously in data recoded by 

individual sensors. For example, combined sensor faults have been reported as an incidental observation 

during experimentation, specifically in the form of gain and linear drift faults occurring in sensors when 

transmission cables are deliberately bent (Li et al., 2023b). To the knowledge of the authors, 

identification of combined sensor faults in SHM systems has hardly been investigated. 
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Despite the scarce attention received in SHM, sensor fault identification and, in particular, the 

identification of combined faults has been investigated in other disciplines for more than two decades, 

as it is an important means to comprehend the causes of sensor faults. A method for detecting, 

identifying, and accommodating faulty sensors in a boiler process has been proposed by Qin and Li 

(1999) using structured residuals with maximized sensitivity, where each structured residual is only 

affected by specific sensor faults. Considering four fault types, i.e. bias, drift, precision degradation, and 

complete failure, the authors have been able to identify single sensor faults as well as simultaneous faults 

affecting different sensors. Cheng et al. (2023) have reported on a sensor fault identification method, 

termed “adaptive particle swarm optimization support vector machine” (APSO-SVM), where APSO 

optimizes the parameters of the SVM network. The method has been applied to diverse types of sensors 

deployed in a research lab, proving that APSO-SVM is capable of identifying combined sensor faults 

that consist of bias and drift. Shen et al. (2024) have proposed a multi-sensor multi-type fault diagnosis 

method for lithium-ion battery, using a two-layer identification algorithm based on correlation 

coefficient, impulse factor, and Hurst coefficient to identify specific fault types, i.e. bias, gain, drift, and 

precision degradation. An “unknown input sliding mode observer” approach has been introduced by Xia 

et al. (2023) to identify three sensor faults, namely bias, drift, and gain. Luca et al. (2023) have presented 

a methodology for fault identification of dissolved oxygen sensors in wastewater treatment plants using 

the Fisher discriminant analysis to identify six sensor fault types, bias, drift, gain, precision degradation, 

fixed value, and complete failure. In automotive software systems, Abboush et al. (2023) have reported 

a methodology to identify combined sensor faults using ensemble long short-term memory (LSTM) and 

random forest networks. In the field of mechatronic systems, Sergiyenko et al. (2022) have introduced 

an approach for sensor fault identification via linear and nonlinear dynamic models using sliding mode 

observers. A simultaneous fault identification approach has been proposed by Yan et al. (2021) to 

identify the source of the faults, whether the faults are caused by sensors or by gas-turbine gas paths. 

Biddle and Fallah (2021) have introduced an identification approach for faults occurring simultaneously 

at multiple sensors in autonomous vehicle controllers via multi-class SVM models. Taimoor et al. (2021) 

have proposed using adaptive radial basis functions for sensor fault identification or quadrotor 

unmanned aerial vehicles. Aiming to identify sensor faults of gas turbine engines, Zhu et al. (2020) have 

introduced a residual-based scheme to identify single and simultaneous sensor faults occurring at 

different sensors.  

 

In this study, an FD methodology for the “identification of combined sensor faults (ICSF)”, referred to 

as “ICSF methodology”, is proposed to identify combined sensor faults simultaneously affecting 

individual sensors. The ICSF methodology builds upon a classification LSTM network and is validated 

using acceleration measurements from a real-world SHM system installed on a pedestrian bridge. The 

results of the validation tests prove the capability of the ICSF methodology to identify combined sensor 
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faults, thus improving the quality of FD by comprehending the causes of sensor faults in real-world 

SHM systems. 

 

The remainder of the paper is structured as follows. First, the ICSF methodology, tailored to sensors of 

SHM systems, is introduced. Next, the implementation of the ICSF methodology is illustrated and 

validated using real-world sensor data (i.e., acceleration measurements). Then, the results are presented 

and discussed. Finally, the summary of the study and the conclusions are provided, along with potential 

future work directions. 

 

2. A methodology for identifying combined sensor faults in SHM systems 

 

This section presents the ICSF methodology for SHM systems. First, background information on 

combined faults is provided. Then, the classification model is presented, which is integrated into the 

ICSF methodology, described thereafter, for identifying combined sensor faults. 

 

2.1 Combined sensor faults 

 

Sensor faults, depending on the fault types, leave unique traces on sensor data (Dragos and Smarsly, 

2016). For example, bias occurs when sensor data exhibits constant divergence from actual sensor data. 

Drift is represented by progressive deviations of sensor data from actual sensor data with time. Gain is 

observed when sensor data is scaled by a constant value. Precision degradation manifests when sensor 

data is contaminated with white noise. Complete failure is represented by replacing sensor data over 

time either with a constant value (“constant complete failure”) or with noise (“noisy complete failure”), 

regardless of changes occurring in actual structural responses. An outlier is apparent in the form of 

discontinuous observations that deviate from sensor data at individual time instances (Dervilis et al., 

2016).  

 

In real-world SHM systems, faulty sensors may exhibit single sensor faults or combined sensor faults. 

As an example, the manifestation of a combined sensor fault that consists of drift and an outlier is 

illustrated in Figure 1. As a result, fault identification must address both fault categories, i.e. single 

sensor faults and combined sensor faults, requiring sophisticated classification networks, such as LSTM 

networks, which are used in this paper and briefly described in the following subsection. 
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Figure 1: Illustration of a combined sensor fault: (a) A single sensor fault with a drift, (b) a single sensor fault with an 

outlier, and (c) a combined sensor fault consisting of a drift and an outlier 

 

2.2 Long short-term memory networks for classification 

 

Long short-term memory networks have shown formidable performance in conducting complex 

classification tasks (Fandango, 2018). LSTM networks are extensions to recurrent neural networks for 

addressing the vanishing gradient problem, capable of mapping relationships between input data (in this 

case, sensor data) and output data (in this case, classes of single and combined sensor faults). From a 

layout perspective, a typical LSTM network follows the usual neural-network architecture, consisting 

of one input layer, one or more hidden layers, and one or more output layers, each consisting of several 

neurons, as shown in Figure 2. The input-output mapping is achieved by training, which involves fine-

tuning the weighted connections between the neurons. Similar to recurrent neural networks, connections 

between neurons in LSTM networks may deviate from the typical unidirectional propagation of data 

between neurons of successive layers, followed in feedforward neural networks. The input layer is 

represented by a “sequence input” layer. The number of sequences is equal to the number of sensors 

considered for the mapping, and the length of each sequence is equal to the number of data points 

collected by each sensor. 
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Figure 2: General architecture of the LSTM classification network 

 

The distinct feature of LSTM networks is the architecture of the hidden layers, which consist, as shown 

on Figure 2, of chains of “LSTM layers” and “dropout layers”. A typical LSTM layer, illustrated in 

Figure 3, comprises four components, a cell state, a forget gate, an input gate, and an output gate. All 

components accept the input vector xt at time t and pass the vector through activation functions, i.e. 

sigmoid functions σs for the input, output, and forget gates, and hyperbolic tangent σh for the cell, as 

shown in Equation 1. 
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c W x U h b  (1)  

 

In Equation 1, y represents the outcome of activation functions (“activations”), and the subscripts j, g 

and o, denote the input gate, the forget gate, and the output gate, respectively. The matrix W holds the 

“input” weights, i.e. the weights of connections with neurons of the previous layer, and U is the matrix 

of “recurrent” weights, i.e. the weights of connections of the output of the LSTM layer ht-1 at the previous 

time step to itself. The vector b is the activation threshold for each component, and ĉ is the outcome of 

activation of the cell component. In the first LSTM layer, xt is the input data vector, and in the next 

LSTM layers, xt is the output of the previous layer. 
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Figure 3: Components of a hidden layer in an LSTM network 

 

The functionality of the LSTM lies in its capability to maintain arbitrary past values in the cell 

component (“long-term memory”, ct-1) and to use the past values along with values of time t–1 (“short-

term memory”, ht-1) to produce the output of the layer at time t (ht): 

 

ct = yg,t ʘ ct─1 + yj,t ʘ ĉt, ht = yo,t ʘ σh (ct), (2) 

 

with c0 = h0 = 0. From Equation 2, it follows that, at each time step, the information to be maintained in 

the cell component as long-term memory is obtained based on the activation of the forget gate, with 

activation values close to σs (z) = 0 resulting in discarding values from the long-term memory (Fandango, 

2018). Each LSTM layer is followed by a dropout layer, which prevents overfitting by defining a 

“dropout rate”, i.e. a fraction of data to randomly be “dropped out” (ignored) during training. 

 

The output layers consist of one “fully-connected layer”, one “Softmax” layer, and one “classification 

layer”. The fully-connected layer receives inputs from the last dropout layer and its activations are 

passed to the classification layer, which contains the classes of single and combined sensor faults to be 

identified. The Softmax layer is placed between the fully-connected layer and the classification for 

converting the activations of the fully-connected layer into probability distributions for each class.  

 

The proposed ICSF methodology essentially involves creating and training LSTM networks to develop 

classification models for identifying both single sensor faults and combined sensor faults. The 

methodology comprises two activities, each encompassing several actions, as described in the following 

subsection. 
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2.3 Description of the ICSF methodology 

 

The ICSF methodology is illustrated in Figure 4 in terms of an activity diagram, comprising two 

activities, (1) “preparing the training dataset” and (2) “developing the classification models”. The first 

activity is composed of four actions, and the second activity encompasses three actions.  

 

 

Figure 4: Activities and actions within the ICSF methodology 

 

Within the first activity, action (i) involves collecting data by the sensors of the SHM system in the 

“data collection period”, where p is the number of data points collected by each sensor. In action (ii), 

correlation analysis is conducted on the sensor data to define the number of correlated sensors k in the 

SHM system, which corresponds to the number of sequences in the LSTM input layer. Each sensor 

within the set of correlated sensors is labeled as i (i = 1, …, k). Then, data collected by correlated sensors 

f1k is stored in a matrix Ap×k, as shown in Equation 3 below: 
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In action (iii), sensor faults are artificially injected into the sensor data. The reason for injecting faults 

is to train the classification networks for identifying real-world combined sensor faults. The sensor data 
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stored in matrix A is duplicated into the input dataset Gi (i = 1, …, k). Both single and combined sensor 

faults are then artificially injected into the vector fi, which indicates the sensor data collected by sensor 

i. The types of injected sensor faults are stored in the corresponding classification output dataset Oi. 

Consequently, the input dataset Gi comprises non-faulty data from sensors (1, 2, …, i-1, …, k), along 

with sensor data from sensor i featuring single and combined sensor faults. 

 

As shown in Equation 4, the total number of sensor fault types C injected into the dataset depends on 

the number of single fault types N, the number of single fault types n included in the combinations, and 

the number of single fault types m included in each combination: 

 

   
!

,
! !

n
C n m N

m n m
 


  (4) 

 

In action (iv), the sensor data in the input dataset Gi is normalized using a minimum-maximum 

normalization method, as shown in Equation 5. The rationale behind data normalization is to avoid 

overfitting in the classification models by preventing extreme values in the data, which could otherwise 

impede the training process by causing numerical instability or convergence issues. In Equation 5, 

xnormalized represents the normalized values, x represents a measurement in the sensor data, and the 

normalization parameters xmin and xmax represent the minimum and maximum measurements in the 

sensor data, respectively. The normalization parameters xmin and xmax used for Gi are saved for future use 

on sensor data fed into the classification model Mi, which is the LSTM-based model that is able to 

identify single and combined sensor faults occurring in sensor i.  

 

min

max min
normalized

x x
x

x x





  (5) 

 

Thereafter, the normalized input dataset G̃i is split into training dataset Gt,i, validation dataset Gv,i, and 

testing dataset Gs,i. The datasets are labeled and used for training the classification networks to develop 

the classification models. 

 

Within the second activity, action (v) defines an initial architecture and the hyperparameters of the 

LSTM classification network. The hyperparameters include the layers comprising the network, the 

activation functions, the optimizer, the number of epochs, and the batch size. 

 

Action (vi) involves training the classification networks with the training dataset Gt,i to create the 

classification model Mi for each correlated sensor i (i = 1, …, k). Throughout training, the training 
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dataset Gt,i is sequentially fed to the input layer of the LSTM classification network in batches. The 

corresponding classes of the output dataset Ot,i are fed into the output layer. The propagation of a single 

batch through the LSTM classification network is a training “iteration”, and, as soon as all batches have 

been passed through the network, one “epoch” is completed. Training involves adjusting the weighted 

connections between neurons in each iteration until the probabilities at the Softmax layer achieve a 

predetermined level of accuracy. The resulting classification model Mi is able to recognize features in 

the input dataset G̃i and classify the sensor data into the corresponding combined sensor fault types. 

During training, in predefined intervals (e.g. after a predefined number of iterations), the validation 

dataset Gv,i is passed through the LSTM classification network to confirm the prediction accuracy trend 

with an independent set of sensor data and, thus, avoid overfitting to the training dataset and, 

furthermore, to fine-tune the hyperparameters so as to improve training. 

 

Upon completing training, the accuracy of each classification model is checked using the testing dataset 

Gs,i. The accuracy (a) of the classification model Mi is calculated by measuring the number of correct 

predictions – true positives (TP) and true negatives (TN) – among the total number of predictions (NP), 

according to Equation 6.  

 

TP TN

NP
a


   (6) 

 

The accuracy essentially measures the “correctness” of the classification model as a whole. To evaluate 

the classification performance of the model, the “precision” and “recall” metrics are used. Precision (pr) 

and recall (rc) indicate the capabilities of the model to avoid false positive classifications and false 

negative classifications, respectively, as shown in Equation 7.  

TP TP

TP FP TP FN
pr rc 

 
,  (7) 

 

where FP is the number of false positives, and FN is the number of false negatives. If the accuracy of 

the classification model Mi is satisfactory, the model is saved in action (vii) to be used for ICSF of sensor 

i. However, an unsatisfactory accuracy of the model requires defining a different architecture of the 

LSTM classification network and training a new classification network, reverting to the fifth action. The 

same process is repeated for all sensors. The implementation of the ICSF methodology is illustrated in 

the following section.  
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3. Implementation and Validation of the ICSF methodology 

 

In this section, the implementation and validation of the ICSF methodology are detailed. The description 

of the ICSF methodology implementation is structured according to the activities of the ICSF 

methodology presented in the previous section, i.e. “preparation of the training dataset” and 

“development of the classification models”. The validation tests are then performed to show the 

capability of the ICSF methodology of identifying combined sensor faults of real-world SHM systems. 

Both validation tests are carried out using sensor data (i.e., acceleration measurements) from an SHM 

system operating on a pedestrian overpass bridge located in Evosmos, Thessaloniki, Greece. The first 

validation test involves sensor faults that are artificially injected into non-faulty acceleration 

measurements collected by the SHM system. In the second validation test, a faulty accelerometer is 

placed within close proximity of a non-faulty accelerometer of the SHM system, i.e. real sensor faults 

instead of artificially injected sensor faults are considered to validate the ICSF methodology. In what 

follows, the ICSF methodology implementation is illustrated. Then, the pedestrian bridge and the SHM 

system used in the validation tests are described, followed by the presentation of the validation tests and 

the discussion of the results. 

 

3.1. Implementation of the ICSF methodology 

 

The implementation of the two activities of the ICSF methodology is shown in this subsection. An in-

depth explanation of how both fault categories (single and combined) are generated and injected into 

the sensor data for training purposes is provided, followed by a description of the development of the 

classification models, based on LSTM networks.  

 

For implementing the ICSF methodology, a SHM system installed on a structure with sensors and a data 

acquisition unit for transferring the sensor data to a centralized server, where the data is stored and 

analyzed, is deployed. The sensor data is used for preparing the training data set. To enhance the training 

accuracy, care is taken that the sensor data, collected in the data-collection period, is representative of 

the structural conditions and loading scenarios anticipated under normal operation. Data analysis is 

conducted via “functions”, written using MATLAB (MathWorks, Natick, MA, 2022). First, Pearson 

correlation analysis is conducted to define the number of correlated sensors k and to create matrix Ap x 

k. Next, sensor faults are calculated and injected into matrix A and for creating the input dataset Gi (i = 

1, …, k). Labels of sensor faults, generated and injected, are stored in the classification output dataset 

Oi (i = 1, …, k). Then, minimum-maximum normalization is performed, as shown in Equation 5. Both 

normalization parameters, xmin and xmax, for the input dataset i, are saved and used to normalize newly 

collected sensor data that is fed to the classification model Mi after training. Finally, the normalized 

dataset G̃i is split into training data (70 %), validation data (15 %), and testing data (15 %). 
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After preparing the training data, the classification models are developed. The process of sensor fault 

identification, through the development of classification models, is introduced herein. The ICSF 

methodology represents an extension of preliminary work, conducted by the authors (Al-Zuriqat et al., 

2023), in which insights pertaining to sensor fault detection, isolation, and accommodation are provided. 

 

To develop the classification models, an initial architecture of the classification networks, with a total 

number of networks equal to the number of the correlated sensors k, is defined based on the general 

architecture of LSTM networks, shown in Figure 2. The input layer is defined along with an initial 

number of hidden LSTM layers and dropout layers with a dropout rate of 0.2 to avoid overfitting. The 

fully connected layer is then defined, followed by the Softmax layer for the classification task and the 

classification output layer. The classification networks with the initial architecture are trained, in which 

the networks utilize pre-existing associations between established input data (data collected by 

correlated sensors with injected faults), and corresponding output data (injected fault type). Then, the 

other hyperparameters are defined, including the optimizer, the number of epochs, and the batch size. 

Thereafter, the accuracy of the trained models is evaluated using the testing data set, as illustrated in 

Equation 6, based on the previously derived threshold γ. Until the accuracy of the models is satisfactory, 

the architecture and hyperparameters of the networks are modified and the networks are retained. 

Finally, the classification models, which demonstrate satisfactory accuracy when evaluated with the 

testing data, are saved for identifying combined sensor faults using new sensor data. 

 

After the implementation, validation is conducted essential for proving that capability of identifying 

combined sensor faults. The ICSF methodology is validated using the real-world SHM system installed 

on the pedestrian bridge, as further illuminated.   

 

3.2. Description of the pedestrian bridge and the SHM system 

 

The pedestrian overpass bridge, shown in Figure 5, serves pedestrian traffic over the Inner Ring Road 

of Thessaloniki, and it has been a subject of research in previous studies (Dragos et al., 2020; Smarsly 

et al., 2022a; and Smarsly et al., 2022b). Constructed in 2016, the pedestrian bridge consists of a 

composite structure, where a steel structure supports a reinforced-concrete deck. The composite 

structure rests on two steel girders at both ends with square hollow sections. The dimensions of the 

reinforced-concrete deck are 35.00 m in length and 4.60 m in width. Cylindrical reinforced-concrete 

columns support the girders at each end of the composite structure, and the connections between the 

girders and the columns are realized using elastomeric bearings that allow partial fixity. To ensure load 

transfer, the composite structure features two inwardly inclined steel arches. The arches have square 

hollow cross-sections, are connected to the composite structure by steel cables, and are fully welded to 
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the girders at the ends. The lateral stability of the bridge is enhanced through steel beams connecting the 

main girders at equidistant points. 

 

 
Figure 5: The pedestrian bridge in Evosmos, Thessaloniki, Greece 

 

The SHM system comprises four accelerometers, S1, S2, S3, and S4, which have been previously tested 

and found to be non-faulty. The accelerometers are equally distributed along the central axis spanning 

the length of the bridge, spaced 7 m apart from each other, ignoring both ends of the bridge above the 

supporting columns, at which accelerations have negligible impact on the structural behavior of the 

bridge. In addition to the four non-faulty accelerometers, a “faulty” accelerometer, denoted by FS2, 

proven to be faulty in previous experiments, is placed within a close proximity to the non-faulty 

accelerometer S2. Figure 6 presents the top view of the pedestrian bridge and the locations of the faulty 

and non-faulty accelerometers used in the validation tests. 

 

 

 
Figure 6: Top view of the pedestrian overpass bridge with the locations of the accelerometers 
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3.3. Description of the validation tests 

 

First validation test (artificially injected sensor faults) 

 

In the first validation test, acceleration measurements are collected by the four accelerometers, S1, S2, 

S3 and S4, over a 90-minute data collection period at a sampling rate of 128 Hz, as part of the first activity 

of the ICSF methodology. Each accelerometer collects a total of p = 692,628 data points. Next, the 

correlated sensors are defined through correlation analysis on the acceleration measurements. The 

Pearson correlation coefficient reveals a strong correlation (> 0.90) among all four accelerometers, i.e. 

k = 4. The lowest correlation coefficient observed is 0.937, between sensors S1 and S4. Following the 

correlation analysis, the acceleration measurements from all four correlated accelerometers f1k = 4, are 

stored in matrix A692628×4. 

 

Seven single faults (N = 7) are considered, comprising bias, drift, gain, precision degradation, complete 

failure (constant and noisy), and outliers. Concerning combined sensor faults, combinations of two 

single faults within the same sensor (m = 2) are considered. For instance, a combination may involve 

simultaneous occurrence of drift and outlier within an individual sensor. Complete failure, both constant 

and noisy, involves sensors stopping operation and, thus, cannot be combined with other single faults; 

therefore, complete failures are excluded from combinations (n = 5). The total number of sensor fault 

types is C (n, m) = 17, computed with Equation 4. Table 1 shows an overview of the sensor fault types 

of both categories, single and combined, considered in the validation tests. Furthermore, visual 

representations of the single and combined sensor fault types are given in Figures 7 and 8.  

 

Table 1: Sensor fault types considered in the validation tests 

Fault 
category 

Sensor fault type Description Class No. 

S
in

gl
e 

fa
u

lt
s 

Bias 

Included in 
the 

combinations 

1 

Drift 2 

Gain 3 

Precision degradation 4 

Outlier 5 

Complete failure (constant) Excluded 
from the 

combinations 

6 

Complete failure (noisy) 7 

C
om

p
os

it
e 

fa
u

lt
s Bias + Drift  8 

Bias + Gain  9 

Bias + Precision degradation  10 

Bias + Outliers  11 
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Drift + Gain  12 

Drift + Precision degradation  13 

Drift + Outliers  14 

Gain + Precision degradation  15 

Gain + Outliers  16 

Precision degradation + 
Outliers 
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Figure 7: Qualitative representation of single sensor fault types included in the validation tests 
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Figure 8: Qualitative representation of combined sensor fault types included in the validation tests 

 

The acceleration measurements, previously stored in matrix A692628×4, are used to create the four input 

datasets, each evenly divided into 17 subsets, where each of the sensor fault types, shown in Table 1, is 

artificially injected. The classes of the sensor fault types injected into the input dataset Gi (i = 1, …, 4) 

are stored in the corresponding output dataset Oi (i = 1, …, 4). Thereafter, the acceleration measurements 

of the input dataset i are normalized, according to Equation 5, and the normalized input dataset G̃i is 

divided into 70 % training dataset (484,838 data points), 15 % validation dataset (103,894 data points), 

and 15 % testing data (103,894 data points). The normalization parameters, xmin and xmax, employed for 

the input dataset i during training are saved for application to new sensor data fed into the classification 

model Mi.  

 

The initial architecture for the LSTM classification network is defined, featuring a sequence input layer 

with length equal to the number of correlated sensors k = 4. The output layer comprises a fully-connected 

layer, the Softmax layer, and a classification layer with 17 classes, representing one sensor fault per 

class, as shown in Table 1. After a trial-and-error process, three hidden layers are defined, each layer is 

composed of an LSTM layer followed by a dropout layer, with the probabilities of the dropout layers 

uniformly set to 20 %. Four classification models, corresponding to the number of the correlated sensors 

(k = 4), are developed. The network architectures of all four models are chosen to be the same. Each 

model Mi classifies sensor fault types of sensor i, using acceleration measurements from the four 

correlated sensors of the SHM system as input data. Figure 9 illustrates the network architecture of the 
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classification models M1, M2, M3, and M4, each dedicated to classifying the sensor fault types in sensors 

S1, S2, S3, and S4, respectively. It should be noted that the total training time for each classification models 

M1, M2, M3, and M4 are recorded as 62 minutes, 69 minutes, 56 minutes, and 128 minutes, respectively, 

trained on a computer equipped with a GPU, boasting 10GB of GDDR6X memory, and operating at a 

speed of 1188 MHz.  

 

Based on Equation 6, the accuracy of the models is assessed with the testing dataset comprising 103,894 

data points. The level-of-accuracy threshold is set to 85 %, based on previous experience from fault 

detection (Al-Zuriqat et al., 2023). Upon completing training, it is observed that the model M2 exhibits 

the lowest accuracy of 90.3 %. The results are discussed in the next section, together with the results of 

the second validation test. 

 

 
Figure 9: Network architecture of the classification models M1, M2, M3, and M4 used in the validation tests  

 

Second validation test (real-world sensor faults) 

 

The second validation test covers sensor faults obtained from the real-world SHM system using the 

faulty accelerometer FS2. The classification model M2, previously trained to identify faults for the non-

faulty sensor S2, is used to identify sensor faults for the faulty accelerometer FS2. Specifically, data 

collected by S1, FS2, S3, and S4 is used as input for the classification model M2. 

 

Unlike the first validation test, where sensor faults are artificially injected under controlled conditions, 

no prior knowledge is available about the locations of the sensor faults existing in the dataset of FS2 or 

about the types of the sensor faults. The acceleration measurements used in this validation test 

correspond to a data collection period of approximately 7 minutes at a sampling rate of 128 Hz. In the 

data collection period, the total number of data points collected by each of the accelerometers, i.e. S1, 

FS2, S3, S4, and FS2, is p = 53,688 data points. To validate the fault identification capability of the 

classification model M2, the acceleration measurements collected by the faulty accelerometer FS2 are 

visualized and compared with the acceleration measurements collected by the non-faulty sensor S2, as 

shown in Figure 10.  
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Figure 10: Time-history of acceleration measurements collected by the non-faulty sensor S2 and the faulty sensor FS2 

 

As depicted in Figure 10, the acceleration measurements collected by the faulty accelerometer FS2 

exhibit a noticeable deviation from the data captured by the accelerometer S2 due to the faults featured 

in FS2. To focus on the main goal of identifying combined sensor faults, a detailed analysis is conducted 

on data within windows 1, 2, 3, and 4, marked in Figure 10. The results of the validation tests are 

presented and discussed in the next section. 

 

4. Results and discussion 

 

This section presents the results of both validation tests. The results are first tabulated, followed by a 

discussion on the capability of the ICSF methodology to identify combined sensor faults in SHM 

systems. 

 

4.1. Identification of artificially injected sensor faults 

 

This subsection showcases the results of applying the classification models, M1, M2, M3 and M4, 

obtained via the ICSF methodology, on newly collected acceleration measurements artificially injected 

with sensor faults. Table 2 shows the fault identification results of all the classification models using the 

newly collected acceleration measurements with artificially injected sensor faults. The results include 

accuracy values, as well as precision and recall metrics for each sensor fault and each classification 

model. As noted from Table 2, the lowest precision value of 62.5 % is achieved by model M1, predicting 

the single sensor fault type “Outlier”. Moreover, the lowest recall values of 11.7 %, 4.8 %, 8.5 %, and 

57.2 % are achieved by the four models M1, M2, M3, and M4, respectively, from predicting the same 

combined sensor fault type “Drift + Outliers”. 



21 

 

Table 2: ICSF results of the precision (pr), recall (rc), and accuracy (a) of the artificially injected sensor faults 

Fault 
category 

Sensor 
fault type 

No. 
M1 M2 M3 M4 

pr 
(%) 

 rc 
(%) 

pr 
(%) 

rc 
(%) 

pr 
(%) 

rc 
(%) 

pr 
(%) 

rc 
(%) 

S
in

gl
e 

fa
u

lt
s 

Bias 1 98.1 94.4 95.4 97.7 96.6 97.9 96.9 97.3 

Drift 2 78.6 98.3 79.0 97.2 81.0 97.9 88.8 92.5 

Gain 3 98.7 99.3 96.6 97.2 95.1 98.3 98.6 97.9 

Precision 
degradation 

4 94.6 97.8 92.7 95.0 95.6 97.4 90.2 76.8 

Outlier 5 62.5 82.0 89.3 91.6 91.8 87.6 66.3 75.2 

Complete 
failure 

(constant) 
6 99.1 99.4 99.8 99.9 99.2 99.6 99.9 99.8 

Complete 
failure 
(noisy) 

7 98.0 99.5 99.8 99.8 99.6 99.1 99.7 99.7 

C
om

p
os

it
e 

fa
u

lt
s 

Bias + Drift 8 98.9 96.5 89.8 89.9 93.7 93.1 98.0 99.9 

Bias + Gain 9 97.6 99.2 99.5 
100.

0 
97.0 99.0 99.5 99.8 

Bias + 
Precision 

degradation 
10 99.9 98.0 95.2 99.4 99.9 98.4 77.2 95.8 

Bias + 
Outliers 

11 72.9 66.7 99.5 85.0 92.8 87.4 95.8 90.3 

Drift + Gain 12 97.8 91.7 78.6 61.1 88.2 91.8 88.4 94.4 

Drift + 
Precision 

degradation 
13 99.4 96.7 70.6 82.2 95.9 90.6 99.8 93.2 

Drift + 
Outliers 

14 95.6 11.7 69.4 4.8 83.3 8.5 73.5 57.2 

Gain + 
Precision 

degradation 
15 97.1 98.6 94.9 96.3 98.6 98.0 98.3 99.9 

Gain + 
Outliers 

16 97.1 94.5 87.3 84.8 92.2 92.1 96.0 87.7 

Precision 
degradation 
+ Outliers 

17 89.6 76.7 83.1 78.2 85.2 80.1 69.5 64.9 

 Accuracy a 93.7 % 90.5 % 93.8 % 92.5 % 

 

The accuracy of correctly identifying sensor faults for models M1, M2, M3, and M4 stands at 93.7 %, 

90.5 %, 93.8 %, and 92.5 %, respectively, concluding that all models are capable of achieving 

acceptably accurate classification. Details on identifying single and combined sensor faults for model 

M3 are exemplarily illustrated in Figure 11, in the form of a confusion matrix. The confusion matrix 

shows the precision and recall values of all classes included in both categories of single and combined 

sensor faults, following the same numbering as in Table 1. The precision values are depicted at the 

bottom of the confusion matrix, and the recall values are shown at the right of the confusion matrix, 

based on Equation 7. 
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Figure (11): Confusion matrix of all sensor fault types injected into sensor S3 

 

As noted from Figure 11, the precision values among all 17 classes range between 81.0 % and 99.9 %. 

Furthermore, the recall values range between 80.1 % and 99.6 %, except for class 14, referring to the 

combined sensor fault type “Drift + Outliers” with a recall value of 8.5 %. The reason of facing 

difficulties identifying outliers arises from the subtle patterns that outliers exhibit, characterized by 

intermittent observations occurring at isolated time points within a continuous signal, causing 

imbalanced training data. 

 

4.2 Identification of real-world sensor faults 

 

The results of applying the ICSF methodology with acceleration measurements newly collected by the 

faulty accelerometer FS2 in the second validation test are presented herein. Table 3 shows the number 

of sensor faults correctly identified by the ICSF methodology in the acceleration measurements collected 

by the faulty accelerometer FS2. 
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Table 3: Real-world sensor faults identified by the ICSF methodology using data from the faulty-sensor FS2 

Single fault Combined faults 
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As presented in Table 3, the ICSF methodology has correctly identified a total of 42,919 sensor faults 

within the acceleration measurements collected by the faulty sensor FS2. Notably, the most common 

sensor fault type, constituting nearly 75 % of the total identifications, is a drift. To ensure that the 

proposed ICSF methodology has correctly identified real-world sensor faults, and since both the faulty 

accelerometer FS2 and the non-faulty accelerometer S2 have been positioned at the same location, the 

acceleration measurements from both accelerometers are visualized side-by-side, as depicted in 

Figure 10. 

 

The first window in Figure 10 illustrates the combined sensor fault “Drift + Gain”. The second window 

starts with downward bias, which is subsequently combined with drift, representing the combined sensor 

fault “Bias + Drift”. The third window starts with a drift, combined from some point on with a bias to 

produce the same combined sensor fault “Bias + Drift”. Finally, the fourth window displays the 

combined sensor fault “Bias + Outliers”. The LSTM classification models have successfully identified 

the combined sensor faults depicted in windows 1, 2, and 3. However, the combined sensor fault in the 

fourth window, “Bias + Outliers”, has not been successfully identified by the models. The reason for 

facing difficulties identifying outliers is the subtle patterns of outliers, which represent intermittent 

observations at isolated time points within a continuous signal. The subtle patterns of outliers cause 

imbalanced training data with a smaller number of datasets exhibiting the “outliers” fault compared to 

the numbers of the datasets exhibiting each of the other faults.  

 

The results shown in both validation tests comprising identification of artificially injected as well as 

real-world combined sensor faults lead to the conclusion that the ICSF methodology is capable of 

successfully identifying single sensor faults as well as combined sensor faults. However, the sensor 

faults “outliers”, whether single or combined with other sensor faults is characterized by low values of 

precision and recall. Identifying outliers may be difficult for the classification models due to the subtle 
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patterns of outliers, corresponding to discontinuous observations at isolated time instances in a 

continuous signal, causing imbalanced training data. Nevertheless, identifying outliers is not critical for 

FD since outliers may be identified and eliminated from the original signals through signal pre-

processing. 

 

5. Summary and conclusions 

 

Fault diagnosis in SHM systems includes fault detection, isolation, identification, and accommodation. 

Fault identification, so far, has received scarce attention, and FD methods that involved fault 

identification consider only single sensor faults in individual sensors. Nonetheless, combined sensor 

faults affecting individual sensors reflect real-world situations, showcasing the importance of ICSF for 

SHM systems. To improve the quality of FD and to comprehend the causes of sensor faults, this paper 

has proposed an ICSF methodology. The ICSF methodology is capable of identifying combined sensor 

faults occurring simultaneously at the same sensor. To address combined sensor faults, sensor data with 

artificially injected sensor faults has been used to train LSTM classification networks. Sensor data with 

artificially injected sensor faults has been labeled to enable the classification network to learn the types 

of faults considered in the ICSF methodology.  

 

To validate the ICSF methodology, two validation tests have been conducted using acceleration 

measurements from a real-world SHM system installed on a pedestrian bridge, located in Greece. In the 

first validation test, sensor faults have been artificially injected into acceleration measurements collected 

by the SHM system. In the second validation test, an accelerometer, which has proven to be faulty based 

on previous experiments, has been placed within a close proximity to a non-faulty accelerometer of the 

SHM system. The results of the validation tests have shown that the classification models of the ICSF 

methodology are capable of identifying combined sensor faults, as exemplarily proven by the fault types 

bias, drift, gain, precision degradation, and outliers. Nonetheless, due to the imbalanced training data 

caused by the subtle patterns of outliers, corresponding to discontinuous observations at isolated time 

instances in a continuous signal, identifying outliers has been challenging for the classification models. 

However, since outliers can be identified and removed from the original signal through signal pre-

processing, the significance of identifying outliers diminishes in FD. In conclusion, the ICSF 

methodology proposed in this paper has proven the capability to identify combined sensor faults 

occurring simultaneously at individual sensors, perceiving the causes of sensor faults, representing a 

step forward to improve FD in SHM systems. 

 

Future research may consider decentralizing the ICSF methodology by embedding the classification 

models into the sensor nodes of wireless SHM systems, in addition to expanding the methodology to be 

able to differentiate between sensor faults and structural damage. Moreover, coupling imbalanced-data-
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handling methods with the ICSF methodology may be investigated to overcome the imbalanced 

distribution of training data. Furthermore, the ICSF methodology may be reformulated as a 

mathematical classification problem to be ready to be complemented with an explanation interface using 

explainable artificial intelligence, adding transparency to the ICSF methodology.  
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