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Abstract 

 

Damage detection via vibration testing typically relies on damage-sensitive features, which serve 

as “damage indicators”, and decisions upon the existence of damage are based on comparing the 

damage indicators retrieved from two distinct structural states. However, the relatively low 

sensitivity of damage indicators to the onset of structural damage remains an open question, despite 

the considerable research efforts in vibration testing over the years. Low-sensitivity problems may 

be particularly exacerbated by the complex dynamic behavior of lightweight structures, such as 

lightweight bridges subjected to vehicular traffic. In particular, due to material (and, by extension, 

mass) reduction in lightweight bridges, vehicles essentially act as “traveling masses”, which are 

comparable to the structural mass and result in a coupled complex dynamic motion problem that 

may obscure typical damage indicators used in vibration testing. This paper presents a damage 

detection approach for lightweight bridges with traveling masses, leveraging the powerful feature-

extraction capabilities of machine learning (ML). In particular, a convolutional neural network 

(CNN) is trained to classify acceleration response data, collected from vibration testing, into 

damage scenarios. The training data for the CNN are created via simulations of damage scenarios, 

using calibrated analytical models. The damage detection approach is validated in laboratory tests 

on a continuous beam, showcasing the capability of the CNN to classify damage scenarios of the 



beam. The outcome of this paper aims to serve as a starting point towards employing ML for 

damage detection in the context of vibration testing as well as structural health monitoring. 
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1. Introduction 

 

Vibration testing is frequently employed for system identification and damage detection purposes 

as part of non-destructive evaluation of structures. For example, vibration testing is usually applied 

in the form of experimental modal analysis (typically, input-output modal identification) as well 

as operational modal analysis (typically, output-only modal identification), based on collecting 

acceleration response data under controlled excitation and under ambient excitation, respectively 

[1]. Drawing from the field of structural health monitoring (SHM), in which vibration testing holds 

a central role, common ground among most vibration-based damage detection (VBDD) methods 

is the extraction of damage-sensitive features, which essentially serve as “damage indicators”. 

Decisions on the existence of damage are based on comparisons between damage indicators 

between two structural states, one designated as “undamaged” and one as “current” [2]. 

 

In structural engineering, the application of VBDD dates back to the 1970s, with research focusing 

first on damage-proofing off-shore oil/gas platforms, with subsequent extensions to critical 

infrastructure, including bridges [3]. Despite the promising results of early laboratory-validated 

approaches using modal parameters (eigenfrequencies, mode shapes) as damage indicators, 

transferring these approaches to full-scale real-life SHM has proven challenging, due to the low 

sensitivity of dominant (typically, low-frequency) modal parameters to the onset of structural 

damage [4]. Furthermore, in computing modal parameters, there is an implicit requirement that the 

excitation conditions (e.g. acting loads) and structural parameters (e.g. structural mass) are 

relatively stationary; this requirement rarely holds true, due to operational and environmental 

effects. Finally, tracking eigenfrequencies and mode shapes may be particularly difficult in 



structures exhibiting complex dynamic behavior, in which modal parameters can hardly be 

intuitively inferred via engineering judgment. Complex dynamic behavior is particularly 

pronounced in lightweight bridges subjected to vehicular traffic. In particular, the introduction of 

high-performance materials in bridge construction encourages material reduction to satisfy 

budgetary, operational or even aesthetic design requirements, resulting in vehicular masses being 

comparable to structural masses of lightweight bridges. Vehicles traversing decks of lightweight 

bridges essentially behave as “traveling masses”, resulting in a complex dynamic motion problem 

with strong coupling between the traveling mass and the structural mass, which is hardly amenable 

to conventional VBDD using modal parameters [5]. At a first glance, the aforementioned problem 

seems to affect predominantly lightweight bridges with complex geometries; however, as will be 

shown in this paper, the problem may also concern simple beam-like bridges. 

 

With respect to lightweight bridges with traveling masses, VBDD essentially entails solving a 

“moving-load/mass” problem. Lots of research has been done on understanding and modeling the 

moving-load/mass problem, which dates back to the days of steam locomotives from two centuries 

ago, when the first mathematical formulations have been developed as a means of analyzing 

railway traffic over iron bridges [6]. Starting from the 1960’s onwards with the seminal work of 

Fryba [7], the basic problem of a single load moving with constant speed over a single beam span 

has extensively been investigated, including extensions to multiple spans, multiple moving loads, 

and loads that accelerate/decelerate. Furthermore, the moving point load problem – representing a 

moving vehicle – has evolved into a problem analyzing the behavior of a structural sub-system 

with its own mass, stiffness and damping [8]. Numerical methods for analyzing the vibrations of 

structures under moving inertial loads with applications to railway problems, including the 

development of space-time finite elements for dynamic analysis of both Bernoulli-Euler and 

Timoshenko beams, have been proposed by Bajer and Dyniewicz (2012) [9]. The applicability of 

the moving point load approaches to bridge decks has also drawn research attention [10-13]. A 

detailed summary on the hierarchy of the mathematical models used for train-track-bridge 

interaction, covering probabilistic dynamic analysis of single bridges as well as bridge networks, 

can be found in Johansson (2013) [14]. Particular research focus has been placed on data analysis 

methods for the moving load/mass problem, such as the short-time Fourier transform (STFT), 

otherwise known as the Gabor transform [15]. Other techniques for analyzing acceleration 



response data from bridges under moving loads are the wavelet transform [16] and the Hilbert 

transform [17], the latter being used for analyzing acceleration response data over large time 

intervals in single span railway bridges for tracing changes in the eigenfrequencies and damping 

ratios. The possibility of correlating damage indicators of bridges to the energy band variation of 

the acceleration time history of a moving vehicle using STFT has been presented in He et al. (2018) 

[18]. Regarding damage detection in pre-stressed concrete bridges, the relaxation of pre-stress in 

a continuous beam has been examined with the aid of data recovered from vehicles travelling over 

such bridges [19]. A thorough review of studies on moving loads in structures for the purpose of 

damage detection can be found in Dadoulis and Manolis [20]. 

 

Approaches on VBDD in bridges from a SHM perspective have been proposed since the 1980s. 

For instance, Doebling et al. [3] have provided an overview of VBDD for bridges in the last two 

decades of the 20th century. Following the advances in SHM, case studies of vibration-based SHM 

systems installed in bridges also have been reported [21]. However, vibration-based SHM largely 

has been restricted to facilitating system identification and enhancing the level of knowledge on 

existing structural conditions rather than actually detecting damage. As stated in [21], by 2011, no 

cases of damage detection using vibration-based SHM in bridges had been reported. The apparent 

failure of vibration-based SHM to resonate with practical problems in bridge maintenance has been 

attributed to the stark differences between simple laboratory tests, used to validate vibration-SHM 

approaches, and real-life structures operating in dynamic surroundings [22]. Recent approaches on 

vibration-based SHM (including VBDD) on bridges have been leveraging machine leaning (ML), 

building upon the seminal work of Farrar and Worden [2], who have cast the SHM problem within 

a statistical pattern recognition paradigm and, later, within a machine learning framework [23]. A 

recent review of the transition from traditional methods to ML-based methods for VBDD can be 

found in Avci et al. [24]. 

 

Adding to the argument of Cawley [22] that laboratory tests on simple beams may fail to replicate 

real-world phenomena, it is argued in this paper that the comparability of traveling masses to 

structural masses poses further challenges even during laboratory tests with beams. In particular, 

the strong coupling between a traveling mass and the structural mass of a beam obscures the 

frequency content of acceleration response data, rendering traditional VBDD methods, such as 



frequency shifts and tracking of mode shapes, impractical. To circumvent this problem, the 

damage detection approach presented herein, builds upon feature extraction for identifying 

structural damage during laboratory-level vibration-testing of lightweight bridges, represented as 

simple beams traversed by traveling masses. The damage detection approach, which is essentially 

an extension of the concept presented by the authors [25], is based on machine learning for 

extracting features from acceleration response data and for classifying the features into predefined 

damage scenarios. Specifically, a convolutional neural network (CNN) is created and trained with 

acceleration time histories, i.e. acceleration responses obtained from simulations of a steel beam, 

representing a lightweight bridge deck, under different damage scenarios. Thereupon, the CNN is 

fed with acceleration response data recorded using a laboratory setup, including a steel beam, 

instrumented with accelerometers, and traveling masses, comparable with the mass of the beam. 

In [25], the classification capabilities of the CNN have been proven for damage scenarios involving 

“softening” of the supports. In this paper, the capabilities of the CNN in distinguishing between 

softening of supports and cracking close to the midspan of the deck are corroborated. The 

remainder of the paper starts with a description of the simulations and pre-processing of 

acceleration time histories, conducted to produce training data for the CNN. Next, the training 

process is described, followed by the implementation and validation tests. The paper concludes 

with a summary of the main findings and an outlook on future research. 

 

2. Modeling and simulation of the moving-mass problem 

 

Machine-learning classification using convolutional neural networks falls into the category of 

supervised learning, which relies on procuring “labeled” training data, i.e. data that correspond to 

the scenarios (“classes”) envisaged for the phenomenon being investigated. With regard to VBDD, 

obtaining acceleration response data from scenarios involving structural damage is practically 

impossible in real-world structures. Solutions to this problem involve modeling and simulation 

either via laboratory down-scaled physical models of structures or via simulations using numerical 

or analytical modeling. Limitations related to the former solution include scaling problems and 

accurate representation of damage scenarios, while the latter solution introduces simplifications 

due to the linearization of the generally non-linear behavior of structures, particularly in the event 

of structural damage. In this paper, the labeled training data consists of acceleration time histories, 



obtained via analytical simulation of the moving-mass problem. The reasoning behind selecting 

analytical modeling is that the partial differential equations of the continuous structural system are 

capable of capturing the moving-mass problem in its totality as opposed to piecewise solutions 

offered by finite element modeling. Specifically, analytical models are capable of integrating the 

effects of the speed of the traveling mass, which influences the structural response. With respect 

to linearization-induced limitations, as will be shown in this paper, the CNN exhibits robust 

performance and the ability to discern subtle damage-induced patterns even in the linear 

components of the structural response. In what follows, the analytical modeling process for 

obtaining the labeled training data is illuminated. 

 

The analytical modeling of a lightweight bridge traversed by a traveling mass can be modeled as 

a continuous Euler-Bernoulli beam, shown in Figure 1. The structural response of the beam is 

described through the following partial differential equation of motion: 

 

( ) ( ) ( ) ( ), , , cρAw x t cw x t EIw x t f δ x vt+ + = −  (1) 

 

 

 

Figure 1. Euler-Bernoulli beam with traveling mass. 

 

As can be seen in Equation (1), the governing parameters of motion are the material density (ρ), 

the modulus of elasticity (E), the moment of inertia (I), the section area of the beam (A), the viscous 

damping (c), and the speed of the traveling mass (v). The response of the beam is expressed via 

the vertical displacement (w), while the acting force is defined as the product of the contact force 

(fc) and the Dirac delta function (δ) of the coordinate in the longitudinal direction of the beam (x) 

and the speed of the traveling mass over time (t). The derivatives are defined as follows: 
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For estimating the contact force, the equilibrium relationship at the contract point between the 

traveling mass and the beam is considered as follows: 
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The first of the two expressions in Equation (3) corresponds to the total displacements of the 

traveling mass wT(x, t) comprising the vertical displacement of the bridge and a component 

representing the surface roughness r(x). The second expression is the dynamic equilibrium, which 

comprises the gravitational force of the traveling mass (g is the gravitational acceleration), the 

inertial force of the beam, and the contact force. In Equation (3), the longitudinal coordinate is a 

function of time, depending on the speed of the traveling mass (x(t) = vt). The differentiation in 

the second expression results in: 
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By substituting the expressions from Equations (4) and (5) into Equation (1), the resulting equation 

of motion is 
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Modal superposition is employed for solving Equation (6) as follows: 
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Specifically, the vertical displacement, which is a function of a spatial (x) and a temporal variable 

(t) is decomposed into a spatial function (mode shape) and a “generalized” temporal function. The 

complexity of the solution depends on the number of mode shapes considered, with a small number 

being sufficient for describing the structural response. For the Euler-Bernoulli beam, the ith mode 

shape φi(x) is a function of the form: 
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where L is the length of the beam, and ki and C1,i, C2,i, C3,i, C4,i  are the wave number and constants, 

respectively, both depending on the boundary conditions of the beam. Mode shapes are 

characterized by the orthogonality condition[26]: 
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where δij is the Kronecker delta. To utilize the orthogonality condition, the vertical displacement 

terms (and respective derivatives) are decomposed using Equation (7), pre-multiplied and 

integrated according to Equation (9). As a result,  

the terms of Equation (6) are converted as follows (notations for time t and coordinate x are 

dropped for simplicity): 
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In the above, ψ = φ(vt) and ζ = r(vt). By substituting the terms of Equations (10) - (16) in Equation 

(6), the formulation can be recast in matrix form: 
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with q(t) representing the vector of generalized temporal functions of the mode shapes. The 

matrices appearing in Equation (17) are given as follows: 
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Equation (17) is re-formulated in the state-space, which consists of a first-order system of 

differential equations  
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where the matrices A, B and the vectors y, h are computed as follows: 
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Solving Equation (22) for N discrete time intervals κΔt (κ = 1…N) assumes that the matrices A, B 

and the vector h remain constant over each time step Δt and are updated at the end of it. For each 

time interval κ by calculating the eigenvalues Λκ and eigenvectors Ψκ of matrix (–Aκ)
–1Βκ, the 



fundamental matrix Θκ(t), t ∊ [0, Δt] is determined. Using the fundamental matrix, the values of 

vector y at time instance κ are computed as follows: 
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Upon computation of vector y for N time instances, the corresponding vector q is easily obtained, 

and its second derivative is combined with spatial functions of mode shapes to yield the vertical 

accelerations. Thereupon, the accelerations are used for preparing the labeled training data for the 

CNN, as shown in the next section. 

 

3. Damage identification using a convolutional neural network 

 

In this section, the identification of structural damage scenarios using a convolutional neural 

network is presented. First, the preparation of labeled training data for the CNN based on the 

acceleration time histories, obtained via the analytical modeling and simulation process previously 

shown, is described, followed by the CNN training process. 

 

3.1. Preparation of labeled training data 

 

The acceleration time histories obtained from modeling and simulation are typically smooth, i.e. 

impervious to external interferences, such as ambient noise and measurement errors. As such, 

mapping based on raw acceleration time histories, fed as “sequences” to the CNN, may increase 

the risk of poor performance when transferring the CNN to real vibration testing, in which real-

world acceleration response data may be affected by noise or other external factors. Alternatively, 

for the training process proposed herein, the acceleration time histories are pre-processed in an 

attempt to expose features in the data that facilitate the training process. By ensuring that the 

decisions of the CNN are driven by the features, the CNN is expected to perform better in real-

world vibration testing, making its decisions based on similar features exposed in real-world 

acceleration response data while neglecting noise and spurious factors. The pre-processing method 



used in this study is the Gabor transform, shown below, which is suitable for non-stationary 

phenomena, such as bridges traversed by traveling masses: 

 

( )

( )( ) ( )

( )

( )

( )

2

0 1

2 1
2

2

0

1 22 1

2
0

0

,

2
, 0

, ,

, 0

o

o o

o

o

o
o

o p u u

N N

N H N i πuh
N o

u o

γ h s

N
w

s
o e o h

p w eN
N

w

ho e h

G u S W W

N f
W w x h γ N H z h e u

f

A
u f z h

N B N
S A B

A
z hu z h

N B



−

− −

= =

−

=

−
−

=
=

=


= + − =


    

= = =
  =  

  

 



 

 (25)  

 

In Equation (25), Go is the Gabor coefficient at the u-th frequency “bin”, corresponding to 

frequency f, of a No-sized window of acceleration time history ẅ(x, h + γ(No – H)), with H points 

overlap, collected with sampling frequency fs. The Gabor window is denoted by z(h), and Sp is a 

scaling factor. The notation ●* indicates complex conjugate. The Gabor coefficients are typically 

illustrated in color map images, which essentially converts damage identification to image 

classification, which is well-defined in the field of machine learning. An exemplary illustration of 

an acceleration time history (left) with its Gabor transform color map (right) is shown in Figure 2. 

 

 

 

Figure 2. Acceleration time history and Gabor transform color map. 
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3.2. Design and training of the convolutional neural network 

 

The layout of a typical CNN for image classification is shown in Figure 3. The input layer accepts 

a tricolor red-green-blue (RGB) image with aspect ratio NI×NI, resulting in an input vector of size 

NI×NI×3. The input layer is followed by a convolution layer, which consists of sliding “kernels”, 

essentially square matrices of size nI×nI×3, with nI << NI in the general case.  Each kernel scans 

the entire image with a predefined step, termed “stride” (sc), and performs a convolution operation 

(dot product) in each area of the image of size nI×nI, between the RGB values of the area and the 

values of the kernel matrix. Each dot product is stored as a “feature” into an activation map. The 

number of activation maps depends on the number of kernels used. The dimension of each 

activation map is equal to W = (NI – nI)/sc + 1. The features are passed through activation functions, 

which introduce non-linearity to the CNN, thus enabling mapping complex relationships between 

inputs and outputs. Traditional activation functions, typically used in feedforward neural networks, 

such as multi-layer perceptrons, include the hyperbolic tangent and the sigmoid function. In 

convolutional neural networks, a popular activation function is the “rectifier linear unit” (ReLU), 

which is a linear positive function ah that rejects negative values, i.e., ah(xi) = max(0, xi), where xi 

is the input to the activation function. The outputs of the activation function (“activations”) are 

forwarded to a pooling layer, which performs sliding-window operations. Specifically, the 

activations corresponding to each activation map are “pooled” using a window of size np×np, either 

by keeping the maximum value of each window (“maximum pooling”) or by averaging the values 

of each window (“average pooling”). The window in the pooling layer moves across each 

activation map in predefined strides (sp). A typical CNN includes a succession of convolution 

layers and pooling layers, depending on the target “depth” of the CNN. 

 

 

Figure 3. Layout of a typical CNN with one convolution layer and one pooling layer. 
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The output dimension of the last (o-th) pooling layer, following the o-th convolution layer, is of 

size Wp,o = (Wo – np)/sp + 1 and is “flattened”, i.e. converted into a single-column layer, whose 

activations are passed to a fully connected layer. The last part of the CNN involves combining the 

activations of the fully connected layer, in a manner similar to feedforward neural networks, before 

passing the activations to the output layer. Since the output layer contains class names and the 

fully connected layer contains numerical values, the combinations of the activations of the fully 

connected layers are first converted to probability values for each class. The probability values are 

computed using a Softmax layer, which is placed between the fully connected layer and the output 

layer. Finally, it is common to add a dropout layer between the fully connected layer and the 

Softmax layer, which randomly rejects activations during training – based on a predefined 

percentage of acceptance – so as to avoid overfitting. Dropout layers may also be added between 

pooling layers and convolution layers. 

 

The labeled training data set for the CNN consists of images produced via applying the Gabor 

transform to acceleration time histories, computed for several damage scenarios. Each image in 

the labeled training data set is accompanied by the class name of the corresponding damage 

scenario. For training, one subset is extracted, termed training subset, consisting of 80% of the 

images of the labeled training data set. The remaining 20% of the images are used for forming a 

testing subset. Training is performed by first initializing the kernel matrices, and then by 

sequentially propagating the images of the training subset through the CNN. Each forward 

propagation is a training “iteration”, during which a number of images are forwarded, referred to 

as “mini-batch”. In each iteration, the kernel matrices are updated based on the “learning rate” in 

an attempt to minimize the classification performance error (training error). The forward 

propagation of every image in the training subset is called “epoch”. Upon completing a predefined 

number of iterations, a part of the training subset, termed validation subset (20% of the images in 

the training subset) is propagated through the CNN to compute the so-called “validation error”; 

the purpose of propagating the validation subset is to ensure that the training error and the 

validation error follow similar trends and that the CNN does not overfit to the training subset. Once 

a predefined threshold of classification accuracy has been reached (i.e. the training error and 

validation error have fallen below a predefined threshold), training is terminated. Thereupon, the 



testing subset is propagated through the CNN to evaluate the final performance of the CNN. The 

proposed approach, including the analytical modeling and simulation and the CNN training, is 

validated in laboratory tests, described in the next section. 

 

4. Laboratory validation tests 

 

Validation tests are devised, using an experimental setup of a beam with a traveling mass, for 

showcasing the capability of the damage detection approach in classifying acceleration response 

data into damage scenarios. First, the experimental setup is presented, followed by a description 

of the modeling and simulation of the beam and of the generation of labeled training data for the 

CNN. Next, the CNN definition and training are shown, and the laboratory tests are presented. 

Finally, the tests results are discussed. 

 

4.1. Experimental setup 

 

The experimental setup, shown in Figure 4, consists of a simply supported steel beam of 

standardized cross section of type HEB100. The external dimensions of the beam cross section are 

100 mm × 100 mm (width × height), the flange thickness is 10 mm, and the web thickness is 6 

mm. The length of the beam, essentially defined by the effective length of the neutral axis, is L = 

5830 mm. The material properties of the beam are computed via tests, which yield an elastic 

modulus of E = 198.5 GPa and a density of ρ = 7.65·103 kg/m3. The beam rests on a steel 

substructure, comprising an arrangement of rods and struts. The struts are adjustable to facilitate 

leveling the beam, i.e. for compensating for imperfections of the floor. It should be noted that only 

the struts at the end points of the steel beam offer vertical support to the bridge; the middle strut is 

only added to ensure the stability of the substructure and is not connected to the beam. The 

traveling mass is represented by a wheel with a steel shaft, to which variable weights are added. 

The wheel is connected via a twisted-strand steel cable to pulleys, one of which is attached to a 

motor that induces motion to the pulley, and, in turn, to the wheel. The speed of the wheel is 

regulated via a switch, attached to a panel that is connected to the motor, allowing speeds between 

4 cm/s to 50 cm/s. 

 



 

 

Figure 4. Experimental setup for the validation tests. 

 

The beam is equipped with a wireless SHM system, consisting of three wireless sensor nodes, two 

of which (S1 and S3) are placed at the quarter-length points, i.e. at a distance of L/4 and 3L/4 from 

one end of the beam, respectively, and one (S2) placed close to the midspan at 9L/20 from one 

end. The reason for avoiding placing the sensor node exactly at the midspan is to avoid the nodal 

(i.e. zero-crossing) point of the second mode shape, which is expected to have a sinusoidal shape. 

The wireless sensor nodes are of type Lord Microstrain G-Link-200 [27]. Each sensor node includes 

a digital-output triaxial accelerometer with 20-bit resolution, capable of recording accelerations at 

a configurable range from ±2g to ±8g with 25μg/Hz-1 noise floor and sampling frequencies ranging 

from 1 sample per hour to 4,096 Hz. The wireless sensor nodes communicate with a base station, 

serving as “data aggregator”, of type Lord Microstrain WSDA-2000 [28], over the license-free 

2.405-2.480 GHz frequency with 16 channels. The management of the wireless SHM system is 

facilitated via dedicated software, running on a portable computer, to which the base station is 

connected. 

 

4.2. Modeling and simulation of the beam 

 

Using the modeling and simulation process, previously described, the beam is analyzed under five 

damage scenarios, corresponding to five damage classes for training the convolutional neural 

network, labeled L1, L2, L3, L4 and L5, in addition to the “intact beam scenario”, labeled as class 



L0. Two types of damage are considered, (i) cracking of the beam at three locations and (ii) 

“softening” of the supports, representing effects of scour on bridge abutments. In accordance with 

the aforementioned labels, the damage type for each scenario is illustrated in Figure 5. Cracks are 

modeled as discontinuities, represented by rotational springs, while the softening of the supports 

is modeled using translational springs in the vertical direction instead of pin/roller supports. The 

values for the rotational springs corresponding to the cracks (scenarios L1, L2, and L3) range 

between 340 kNm/rad 1,900 kNm/rad, and the translational springs assume values between 420 

kN/m and 610 kN/m. These spring values result in a decrease of the fundamental eigenfrequency 

between 7% and 10%, which is represents low to moderate damage. 

 

 

 

Figure 5. Intact beam and damage scenarios inflicted on the beam. 

 

As mentioned previously, the modeling and simulation of the beam is conducted to generate 

labeled training data for the CNN, which must cover an adequate part of the solution space for the 

problem being studied. Therefore, several simulations are run by perturbing parameters of the 

problem; specifically, the traveling mass, the speed of the mass, and the values of the rotational 

and translational springs. Since samples of the beam material have been tested in the laboratory, 

the material properties are considered of reduced uncertainty and are, thus, excluded from the 

perturbations. The problem parameters in each perturbation are defined using dimensionless 

factors α1, α2 and α3 with 0 ≤ α1, α2, α3 ≤ 1, as follows: 

 

(1) Traveling mass: m = 0.01 + 0.03·α1 (0.01 t ≤ m ≤ 0.04 t) 
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(2) Mass speed: v = 0.20 + 0.30·α2 (0.20 m/s ≤ v ≤ 0.50 m/s) 

(3) Rotational springs at 1/6-length points: kr = 340 + 160·α3 (340 kNm/rad ≤ kr ≤ 500 

kNm/rad) 

(4) Rotational springs at mid-span: kr = 1,300 + 600·α3 (1,300 kNm/rad ≤ kr ≤ 1,900 

kNm/rad) 

(5) Translational springs: kt = 420 +190·α3 (420 kN/m ≤ kt ≤ 610 kN/m) 

 

The values for the dimensionless factors are generated using the Latin Hypercube Sampling (LHS) method [29], which 

produces combinations of random samples of the factors assuming uniform distributions for all factors. The LHS 

method builds upon the “Latin square” concept, which is commonly applied in statistical sampling and dictates that 

each sample has its own row/column position in the square and is only used in one combination. The LHS method is 

essentially a generalization of the Latin square concept to an arbitrary number of dimensions, whereby only one sample 

is present in each axis-aligned hyperplane containing the sample. The LHS method has the advantage of requiring 

only the number of samples that are absolutely necessary for the combinations, thus avoiding redundant samples and 

contributing to the computational economy of the analyses. It is noted that the dimensionless factor α3 is re-used in 

perturbations (3), (4) and (5), because the values of the rotational and the translation springs are not combined with 

each other. Instead, the values of kr for scenarios L1, L2 and L3, as well as the values of kt are individually combined 

with values of m and v. 

The LHS method results in a total of 3,000 simulations, 500 simulations for each class. In each simulation, acceleration 

response data is computed at locations on the beam matching the locations of the sensor nodes, using Equations 22-

24 and Equation 7 with two mode shapes, which, from preliminary tests, have been proven to adequately capture the 

dynamic behavior of the beam. The damping of the two mode shapes has experimentally been estimated to ξ1 = 2.2‰ 

and ξ2 = 8‰. It is noted that the damping coefficients are estimated for the intact beam; however, for low-to-moderate 

damage considered, the effect on the damping coefficients is expected to be negligible and are therefore kept constant 

in all scenarios [30]. The surface roughness r(x) is also estimated from preliminary tests, conducted on the experimental 

setup, by moving a small mass across the beam length at a low velocity (4 cm/s) to avoid any dynamic effects, i.e. the 

transverse beam acceleration is ẅ(x, t) ≈ 0, and by measuring the acceleration response data directly on the traveling 

mass with a wireless sensor node. This acceleration response data is equated to the second time derivative of the 

roughness, assuming that the transmissibility between the contact surface of traveling mass on the beam and the 

wireless sensor node is close to unity. For more information on the estimation of roughness, the interested reader is 

referred to [31]. Thereupon, the spatial derivative of the roughness is approximated as: 

( ) ( )2r t v r x=  (26) 



The acceleration time histories from all simulations are subjected to the Gabor transform to produce images for the 

labeled training data set of the CNN. For the Gabor transform, a Hanning window (z) of size No = 128 measurements 

is selected and a sampling rate of fs = 128 Hz. The overlap H is set to 120 measurements and the scaling factor Sp is 

computed equal to 1.65·10-4 and 3.31·10-4 for u = 0 and u ≠ 0, respectively. Exemplary Gabor transform images, 

plotted in logarithmic scale, are shown in Figure 6 below. The definition and training of the CNN using the labeled 

training data set with the Gabor images is described in the next subsection. 

 

 

 

Figure 6. Spectrograms built from the numerical simulations for all scenarios. 

 

4.3. Definition and training of the convolutional neural network 

 

Based on trial-and-error analyses, the architecture defined for the CNN in this paper is shown in 

Figure 7. Since acceleration response data from three sensor nodes are collected, three CNN 

models are built, each dedicated to one sensor node. The reasoning behind using three sensor nodes 

and three CNN models is to compare the damage detection capabilities of the CNN models with 

different proximity to the location of the damage. The CNN architecture comprises an input layer, 
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accepting RGB images of dimensions 180×180, one convolution layer with 16 kernels of size 9×9 

with stride 1, resulting in 16 activation maps of size 172×172, and one pooling layer, applying 

maximum pooling with a 8×8 window, stride 4 and 50% dropout, which results in 16 activation 

maps of size 21×21. The output of the pooling layer is flattened into a feature vector with 7,056 

entries, which is followed by a fully-connected layer of 128 neurons, whose activations are 

forwarded with 50% dropout to a Softmax layer and eventually to an output layer, containing a 

number of classes equal to the scenarios previously defined. 

 

 

 

Figure 7. Architecture defined for the convolutional neural network. 

 

As can be seen in Figure 7, the CNN architecture is kept relatively simple with low depth (i.e. 

“shallow learning”). The rationale for keeping the architecture simple is that the classification 

using the Gabor images is based on combining low-level features from the entire images, which is 

hardly possible with complex deep CNN architectures. In other words, the idea is to avoid 

classifying the images by identifying high-level features at specific regions (as typically done in 

image recognition), which in these validation tests would result in the CNN overfitting to regions 

of the Gabor images that may contain little information on the structural response. The training 

subset is formed using 80% of the Gabor images (i.e. 2,400 images), 20% of which (i.e. 480 

images) are used for the validation subset. The rest 20% of the images in the labeled training data 

set (i.e. 600 images) forms the testing subset. The training is performed using the Python 

TensorFlow toolkit [32], the Adam optimizer with a sparse cross-entropy cost function, and a 

learning rate of 0.001. Training is completed after 7 epochs for all CNN models, with classification 

accuracy values, defined as percent ratio of correctly classified images over the total number of 
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images in the validation subset, reaching 97.5%. Thereupon, the 600 images of the testing subset 

are propagated through each CNN model; “confusion matrices” for the testing subset, showing the 

classification results for all CNN models are shown in Figure 8. The training accuracy histories 

for all CNN models are plotted in Figure 9. 

 

 

 

Figure 8. Confusion matrices for the testing subset. 

 

 

Figure 9. Training accuracy of the CNN models. 

 

As shown in Figure 8, all CNN models classify the scenarios of the testing subset correctly, 

verifying that training is successful. The performance of the CNN models is validated using Gabor 

images generated from acceleration response data collected with the wireless sensor nodes and the 

experimental setup, as will be shown in the next subsection. 
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4.4. Application of the convolutional neural networks 

 

The experimental setup shown in Figure 5 is used to conduct experiments to collect acceleration 

response data with the wireless sensor nodes. Using combinations of traveling mass values and 

speed values, a total of 120 experiments are devised, covering four scenarios (L0, L2, L4, and L5). 

For the scenarios L4 and L5, the supports at the left end and the right end, respectively, are 

substituted by translational springs of stiffness kt,exp = 457 kN/m (Figure 10 left). For the scenario 

L2, a cut is made 10 cm off the midspan of the bridge, extending through the bottom flange of the 

beam and part of the web, with a total height of 1.65 cm (Figure 10 right), resulting in an equivalent 

rotational spring of kr,exp = 3558 kNm/rad. Both damage types are devised to cause damage of 

severity that lies outside the upper and lower “severity bounds”, considering in modeling and 

simulation, i.e. the 7% and 10% drop of the fundamental eigenfrequency, respectively. 

Specifically, the translational springs cause a drop in the eigenfrequency of 17%, while the 

respective drop for the cut at the midspan is 4%. The reason for selecting the damage types is to 

test the generalization capabilities of the CNN models for damage scenarios that are both less 

severe and more severe than the damage simulated. Five traveling mass values are used, 13 kg, 18 

kg, 23 kg, 27 kg, and 38 kg, and six speed values from 0.25 m/s to 0.50 m/s with 0.05 m/s 

increment. The acceleration response data collected by the three wireless sensor nodes is used to 

produce Gabor transform images, similar to the images produced during modeling and simulation. 

The similarity in the features exposed by the Gabor transform between modeling and simulation 

and the experiments is shown in Figure 11. Moreover, Figure 12 shows the subtle differences 

between scenarios L0 and L2 in the features of the corresponding Gabor images that corroborate 

the necessity of machine learning for damage detection in the traveling mass problem. The 120 

Gabor images are propagated through the CNN variants, previously trained. The classification 

results are shown in the form of a confusion matrix, illustrated in Figure 13. 

 

 

Figure 10. Translation spring substituting pinned support (left) and cut close to midspan (right). 



 

 

Figure 11. Comparison between Gabor images from modeling and simulation and corresponding 

experiment. 

 

 

 

Figure 12. Differences in eigenfrequency-related features between scenario L0 and scenario L2. 

 

 

 

Figure 13. Confusion matrices for the experiments. 
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As can be seen in Figure 13, the best classification results are obtained for the acceleration response 

data from sensor nodes S1 and S3. Particularly concerning damage scenario L2, the classification 

using the data from sensor node S2 (close to the midspan) exhibits several “false negatives”, which, 

at a first glance, would be unexpected considering the proximity of the sensor node to the crack. 

However, the false negatives are attributed to the nodal (zero-crossing) point of the second mode 

shape, whose participation in the structural response has been considered during modeling and 

simulation and has been observed in the acceleration response data of the other sensor nodes. The 

scarcity of features of the second mode shape in the Gabor images from sensor node S2 has resulted 

in the false classification of the images as “intact”, since the classification has predominantly been 

driven by features of the first mode shape, which has low sensitivity to the onset of damage. As 

regards the damage scenarios L4 and L5, the classification results demonstrate the capability of 

the CNN models in detecting features indicative of softening of supports, as well as to generalize 

for damage severity that has not been accounted for during training. Satisfactory generalization 

capabilities are also observed for CNN models corresponding to sensor nodes S1 and S3 for 

damage scenario L2. 

 

Nevertheless, the classification results of damage scenario L2 are subjected to further scrutiny in 

an attempt to examine whether the consensus of the three sensor nodes helps avoid false negatives. 

In Table 1, the 30 experiments, conducted for damage scenario L2 are listed, along with the 

classification results from each CNN model, represented by the corresponding wireless sensor 

node.  

  



Table 1. Damage classification of experiments for the L2 damage scenario (shaded cells with 

bold font indicate false classification). 

 

Experiment 
Classification 

Experiment 
Classification 

S1 S2 S3 S1 S2 S3 

1 L2 L0 L2 16 L2 L2 L2 

2 L2 L0 L2 17 L2 L2 L2 

3 L2 L0 L2 18 L0 L0 L0 

4 L2 L2 L2 19 L2 L0 L2 

5 L2 L0 L2 20 L2 L0 L2 

6 L2 L0 L2 21 L2 L0 L2 

7 L2 L0 L2 22 L2 L2 L2 

8 L2 L2 L2 23 L2 L2 L2 

9 L2 L2 L2 24 L0 L2 L2 

10 L2 L2 L2 25 L2 L0 L0 

11 L2 L0 L2 26 L0 L0 L2 

12 L0 L0 L2 27 L2 L0 L0 

13 L2 L2 L2 28 L2 L2 L2 

14 L2 L2 L2 29 L2 L2 L2 

15 L2 L0 L2 30 L0 L2 L2 

 

As evidenced by Table 1, only in one experiment a unanimous false classification is observed. 

Furthermore, even if the decision upon the existence of damage is based on majority voting, false 

classification in 2 out of 3 CNN variants is observed only in 4 experiments. As a result, assuming 

that the proposed damage detection approach is applied using acceleration response data from 

more than one location on the structure, false negative classifications are likely to be avoided. 

Finally, Figure 14 illustrates the classification probabilities for all the scenarios applied in the 

laboratory experiments and for the CNN models of sensor nodes S1 and S3. The high classification 

probabilities for damage scenarios L4 and L5 (close to 100%) show that the CNN models are 

capable of generalizing easily when the damage exceeds the lower bound of damage severity 

simulated for generating the labeled training data set. By contrast, when damage exceeds the 



respective upper bound (damage scenario L2), the classification probabilities are lower, and false 

negatives are likely, since damage scenario L2 is close to the intact beam scenario L0. To enhance 

the classification capabilities of the CNN models, it is recommended to adopt a transfer learning 

method that would help accommodate the domain mismatch between simulations and real-world 

structural behavior. 

 

 

 

Figure 14. Classification probabilities for all classes considered in the laboratory experiments for 

sensor nodes S1 and S3. 

 

5. Summary and conclusions 

 

Traveling masses on lightweight bridges represent a non-stationary problem that requires 

sophisticated data analysis methods, extending beyond traditional data analysis methods applied 

in structural health monitoring and experimental testing. Drawing up on recent advances in 

informatics, this paper has proposed a damage detection approach using machine learning models, 

the mapping capabilities of which have been well established in scientific literature. In particular, 

convolutional neural network models have been employed for classifying acceleration response 

data, collected by sensors installed on structures, into damage scenarios. In lieu of acceleration 
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response data corresponding to actual structural damage, the CNN models are trained using 

acceleration time histories generated from an analytical modeling and simulation process, 

employing a computationally efficient Euler-Bernoulli beam model. Prior to being used for CNN 

training, the acceleration time histories are subjected to the Gabor transform, which exposes 

coupled time-frequency features in the accelerations that facilitate classification. Upon completing 

training, the CNN models are applied using real-world acceleration response data. 

 

The proposed damage detection approach has been implemented and validated in laboratory tests, 

using an experimental setup, consisting of a simply supported steel beam, a moving mass (sliding 

along the beam), pulleys, and a motor for regulating the speed of the moving mass. The beam first 

has been modeled and analyzed for various combinations of moving masses and speeds under six 

scenarios, five of which have included damage and one representing the “intact” beam, using the 

analytical modeling and simulation process and considering the dynamic contribution of two mode 

shapes. The acceleration time histories from the modeling and simulation from three measurement 

locations of the beam have been used to train three CNN models, respectively, to classify the 

accelerations into the six scenarios. Upon completing training, the CNN models have been used 

for classifying acceleration response data collected from experiments conducted using the 

aforementioned setup and combinations of moving masses and speeds. The beam has been 

instrumented with three wireless sensor nodes, which have been attached to the same locations as 

the measurement locations considered for modeling and simulation. Acceleration response data 

has been collected from the intact beam and after inflicting damage, represented by a crack close 

to the midspan of the beam and by substituting the end supports with translational springs. In total, 

four out of the six scenarios, considered in modeling and simulations, have been devised for the 

experiments. Moreover, the damage severity in the experiments has deliberately been devised to 

fall outside the severity bounds considered in modeling and simulation to test the generalization 

capabilities of the CNN models. The test results have shown that two CNN models, corresponding 

to quarter-length locations of the beam, have exhibited high accuracy in classifying the 

acceleration response data from the experiments, with only four misclassification instances per 

variant. The CNN variant that has used acceleration response data from the midspan has performed 

well in classifying damage to the supports, but below average in classifying the crack damage 

close the midspan. The poor performance of this CNN variant is attributed to the scarcity of 



frequency content of the second mode shape, which is more sensitive to damage than the first mode 

shape, due to a zero-crossing point of the second mode shape at the midspan. Nevertheless, as 

shown in the paper, the combined outcome of all CNN variants is capable of reducing the 

probability of false negatives, when the damage detection outcome follows a majority voting 

rationale. Finally, the test results have shown that the generalization capabilities of the CNN 

variants are better when damage severity exceeds the upper severity bound, considered in 

modeling and simulation, than when dropping below the lower severity bound. Future work will 

involve testing the damage detection approach in real-world conditions and integrating the 

approach into a structural health monitoring strategy. 
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