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Abstract. Artificial intelligence (AI) algorithms have proven effective in 

implementing sensor fault diagnosis (FD) for wireless structural health monitoring 

(SHM). However, FD models based on AI are computationally expensive and require 

large amounts of raw sensor data to be transmitted to centralized servers. This paper 

proposes a decentralized framework for sensor fault diagnosis in wireless SHM 

systems based on the concept of Artificial Intelligence of Things (AIoT). Within the 

decentralized framework, FD models are embedded into wireless sensor nodes to 

ensure that the data collected from engineering structures is fault-free. Thus, only the 

condition of SHM systems, instead of raw data, is transmitted from SHM systems to 

centralized servers via Internet-of-Things communication. To validate the 

decentralized framework proposed in this paper, an SHM system is implemented 

using (i) a portable main station containing the FD models and (ii) four tailor-made 

wireless sensor nodes equipped with microcontrollers and accelerometers deployed 

on a test structure. The results of the validation tests show that the SHM system 

successfully collects acceleration data and diagnoses, in real-time, sensor faults that 

are inserted into the sensor nodes. In future work, the decentralized framework and 

the SHM system presented in this paper may be deployed on a bridge for structural 

condition assessment, while ensuring early detection of sensor faults. 

 

Keywords: Structural health monitoring (SHM); Internet of Things (IoT); Artificial 

Intelligence of Things (AIoT); sensor fault diagnosis. 

1. Introduction  

Advanced sensor technologies have extensively been applied in structural health monitoring 

(SHM) [1]. SHM systems may include accelerometers [2], fiber optic sensors [3], embedded 

temperature sensors [4], or mobile sensing devices, such as unmanned aerial vehicles [5] or 

legged robots [6]. Wireless SHM systems have become particularly popular due to the low 

installation costs and reduced installation time as well as the potential of scalability, 

compared to conventional wired systems [7]. The reliability and performance of wireless 

SHM systems depend on the quality of the data collected by the sensors. However, sensors 

may malfunction over time or experience data transmission problems, impeding correct 

structural assessment [8].  

https://creativecommons.org/licenses/by/4.0/
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Developments in artificial intelligence (AI) and Internet of Things (IoT) technologies 

have substantially enhanced the ability of wireless SHM systems to monitor and assess structural 

conditions, improving maintenance activities towards safer and more resilient civil infrastructure 

[9]. To minimize the impact of faulty sensor data, different sensor fault diagnosis (FD) 

approaches have been proposed in several engineering disciplines [10], including SHM [11]. In 

the field of wireless SHM in particular, AI and signal processing techniques have been applied 

to detect and identify sensor faults [12]. Furthermore, a sensor FD approach based on artificial 

neural networks has been proposed using structural response data in the frequency domain [13]. 

In [14], artificial neural network (ANN) models have been proposed to detect simultaneous 

sensor faults. Nonetheless, sensor FD approaches for wireless SHM systems are usually not 

implemented into the sensor nodes, but typically run on centralized servers, thus preventing real-

time sensor data visualization, storage, and remote interaction with SHM systems. 

This paper aims to address the current shortcomings using the Artificial Intelligence of 

Things (AIoT) paradigm, which integrates artificial intelligence with Internet of Things 

technologies [15], providing opportunities to exploit the increasing computational capacity of 

embedded devices, such as sensor nodes present in wireless SHM systems. Embedded computing 

avoids bandwidth limitations by transmitting a few of information instead of transmitting large 

amounts of raw data, thus representing a promising feature of modern SHM systems. This paper 

presents an AIoT-enabled, decentralized sensor fault diagnosis (DSFD) framework, consisting 

of (i) embedded AI models for sensor FD and (ii) information transmission capabilities using IoT 

technologies facilitating real-time data visualization, data storage, and interact with SHM 

systems. The DSDF framework is implemented on a tailor-made wireless SHM system 

consisting of (i) sensor nodes, each including a microcontroller and an accelerometer, and (ii) a 

portable main station with embedded FD models. The remainder of the paper is structured as 

follows. First, the DSFD framework, focusing on the sensor FD models, and the development of 

the wireless SHM system are elucidated in Section 2. In Section 3, the validation of the DSFD 

framework, conducted by inserting artificial sensor faults into acceleration data, are presented 

and the validation results are discussed. Finally, Section 4 summarizes the paper, giving an 

outlook on potential future applications and possible improvements of the wireless SHM system. 

2. A decentralized sensor fault diagnosis framework for structural health monitoring  

This section presents the AIoT-enabled, decentralized sensor fault diagnosis framework, 

which builds upon the “adaptive FD based on analytical redundancy” (AFDAR) approach, 

as proposed by the authors in [14]. Thereupon, the development of a wireless SHM system, 

implementing the DSFD framework based on a layered IoT architecture, is described.  

2.1 Decentralized sensor fault diagnosis 

The AFDAR approach serving as a conceptual basis for the DSFD framework uses artificial 

neural networks and signal processing to create AI-based FD models, specifically ANN 

models, for detecting patterns of common sensor faults in sensor data. Sensor faults that 

commonly occur in SHM systems include complete failure, complete failure with noise, 

outliers, drift, bias, and gain. Once a sensor fault is detected, the faulty sensor data is replaced 

with virtual sensor data predicted by the ANN models. In three steps, the AFDAR approach 

detects, isolates, and accommodates sensor faults, as depicted in the process diagram shown 

in Fig. 1: 
 

• Fault detection, which recognizes an adverse operation of the SHM system. 

• Fault isolation, which specifies the exact location of a fault. 

• Fault accommodation, which compensates for the effects of the fault. 
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Fig. 1. Process diagram of the AFDAR approach serving as a conceptual basis of the DSFD framework 

2.2 Development of a wireless SHM system based on AIoT 

The wireless SHM system developed in this work is based on a four-layer IoT architecture 

that includes the following four layers, shown in Fig. 2. 
 

• Physical layer, which includes the actual hardware components, i.e. microcontrollers 

and sensors, to collect data, process data with embedded computing, and transmit 

information between devices with IoT communication protocols. 

• Middleware layer, which facilitates database management and communication 

between the different applications and services of the SHM system and embeds the 

FD models. 

• Application layer, which provides an interface that allows end users to interact with 

the SHM system, e.g. via a dashboard and a control panel. 

• Security layer, which encompasses measures implemented transversely across 

various layers to protect sensor data and communication. The measures include 

encryption, authentication, and access control methods at different layers. 
 

 

Fig. 2. Architecture of the wireless SHM system for decentralized FD 

 ollect data

 or ali e data

Find k correlated sensors 

& clean data

 rain A    odels

 han e A   architecture

Apply A    odels to new data  ssue alert

              

               

               

Fault accommodation

  o 
  es 

  o   es 

           

         

                   

                     

 o pute  ovin  avera e

Determine if 

sensor is faulty

  o   es 

                     

                        

Replace  aulty value 

with esti ation

Adapt A    odels 

and retrain

  o   es 

 

                  

          

Physical layer

Wireless SHM system

Middleware layer                  

              

 n rastructure  sers

Portable main station

FD models

Database

Web interface

 ontrol panel

Dashboard

                    

 icrocontroller

Sensors

Wireless sensor node

Microcontroller

Sensors

   

   

   



4 

The four layers are implemented as follows. The physical layer comprises sensor nodes 

consisting of off-the-shelf, low-cost hardware components, including microcontrollers, 

sensors, and small electrical components, such as transistors, resistors, and capacitors. Each 

sensor node includes (i) an accelerometer of type BNO085 and (ii) an environmental sensor 

of type BME280, both from Adafruit. The sensors are connected to a microcontroller of type 

ESP32-S3 from Espressif. The components are selected according to affordability, IoT 

compatibility, compactness, and adherence to open-source principles. Fig. 3 shows the PCB 

board designed to connect the hardware components and the view of the sensor node, after 

assembly and integration into an enclosure. 
 

 

Fig. 3. Wirless sensor node for SHM 

 

The middleware layer consists of a Raspberry Pi, serving as a portable main station that 

provides two main services, (i) bidirectional data transmission between the devices and (ii) 

data management and storage. Data transmission is handled by Node-RED and the 

lightweight IoT communication protocol ter ed “message queuing telemetry transport” 

(MQTT). An MQTT server is implemented to handle, on the one hand, the sensor data 

received from the sensor nodes and, on the other hand, the queries entered by the users to 

interact with the SHM system. The MQTT communication is based on a publish-and-

subscribe protocol designed for IoT applications. Data management and storage is handled 

by Telegraf, which receives the sensor data from the MQTT server and stores the data in a 

highly efficient manner to a time-series database implemented with InfluxDB. The 

communication among the components of the middleware layer as well as the 

communication between the wireless sensor node (physical layer) and the middleware layer 

are illustrated in Fig. 4. 

The application layer features a website, created by Node-RED from the middleware 

layer, that includes an interface with a control panel and a dashboard for data visualization. 

The control panel allows users to communicate with the sensor nodes via MQTT for setting 

sampling rates and durations of the data collection process. In addition, the dashboard 

displays sensor data in real time and shows alerts when the FD models embedded in the 

portable main station detect faulty sensors. The website is physically hosted at the portable 

main station, and users with authentication rights have remote access to both the control panel 

and the dashboard from any end device. 
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Fig. 4. Communication schema between sensor nodes and portable main station 

 

Finally, the security layer includes authentication methods, based on user names and 

passwords, to access the components of the SHM system. All components are connected to 

a private wireless local network. The wireless SHM system implemented herein, based on 

the Artificial Intelligence of Things for decentralized sensor FD, is validated in a laboratory 

test, which is described in the next section. 

3. Validation of the decentralized sensor fault diagnosis framework 

The decentralized sensor fault diagnosis framework is validated by installing the SHM 

system on a test structure. The test setup and the results of the test are described in this 

section. Noticeably, the SHM system serving for validation purposes consists of four sensor 

nodes and a portable main station, forming a hierarchical cluster. 

3.1 Test setup 

The test setup is shown in Fig. 5. Four wireless sensor nodes (WSN1, WSN2, WSN3, WSN4) 

are deployed on a metallic shear-frame structure with dimensions 60 cm × 18 cm × 13 cm 

(height, width, depth). The test structure is placed on a shake table consisting of a plate, a 

stepper motor, and a microcontroller capable of regulating the amplitude and the frequency 

of the excitation remotely via IoT technologies [16]. 
 

 

Fig. 5. Test setup for the validation of the fault diagnosis 

WSN1

WSN2

WSN3

WSN4

Shake table

Portable main station



6 

The validation test is conducted following six steps. 
 

1. Data collection: Acceleration data is collected for 2 hours, including “ orced 

vibration” (when the shake table is actively applyin   orce/ otion to the structure) 

and “ ree vibration” (when the shake table is not applyin   otion). The 

microcontroller of the shake table induces a unidirectional excitation to the shake 

table of 5 Hz with an amplitude of 1 cm. The sampling rate of the sensor nodes is set 

to 100 Hz, which generates 720,000 measurements per sensor node for training the 

AI models for FD.  

2. Training of FD models: The sensor data collected in step 1 is used to create AI-based 

FD models, one for each sensor node. From the data, 70 % is dedicated to training, 

20 % to validation, and 10 % to testing. In this step, the AI-based FD  odels “learn” 

how sensors measure when there are no faults present in the wireless SHM system. 

3. Embedding FD models: The trained FD models are embedded into the portable main 

station of the wireless SHM system and integrated into a script that runs 

automatically. 

4. Collection of new data: The sensor nodes collect new data, which is sent via MQTT 

to the main station. The new sensor data is used as an input to the FD models, which 

assess the state of the sensors, i.e. faulty or non-faulty.  

5. Insertion of sensor faults: To validate that the DSFD framework diagnoses sensor 

faults in real-time, two types of sensor faults are inserted into the SHM system. First, 

a bias sensor fault is artificially inserted by adding a constant value of 2 to the actual 

measurements of the accelerometer of WSN1. Second, a complete failure of a sensor 

is simulated by unplugging the accelerometer of WSN1. 

6. Validation of real-time FD: Upon inserting the sensor faults, users receive the alert 

sent by the system to the dashboard of the web application. 

3.2 Results of the test 

The results of the test are illustrated in Fig. 6, illustrating the measurements of the y-axis (the 

axis where forced vibration is induced by the shake table) of the accelerometers of the 

wireless sensor nodes (labeled “WSN1y”, “WSN2y”, “WSN3y”, and “WSN4y”). The first 

minute of the test (first phase) occurs under normal working conditions of all wireless sensor 

nodes. During normal working conditions, the control panel displays a green light for every 

measurement of the sensor nodes. During the second minute of the test, the bias fault is 

inserted in the y-axis of WSN1.  

As a result of applying sensor FD, a red light flashes in the control panel, indicating 

that a sensor fault has been detected. Next, the SHM system isolates the sensor fault. During 

the third minute of the test, the sensor faults are removed and normal working conditions are 

restored in the system. The normal working conditions are represented in the control panel 

by displaying green lights. Finally, in the fourth minute of the test, a red light flashes for all 

axis of WSN1, i.e. x-, y-, and z-axis, as result of a complete failure of WSN1, simulated by 

unplugging the accelerometer of WSN1. 
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Fig. 6. Results of the real-time FD 

3.3 Discussion of the results 

The results of the validation test confirm that the decentralized sensor fault diagnosis 

framework is capable of diagnosing sensor faults in real time. When a sensor fault is detected, 

the SHM system sends an alert to notify that a specific sensor has been classified as faulty. 

Thus, maintenance activities can be conducted quickly, reducing the loss of data and, by 

extension, ensuring reliable structural health assessment. The real-time diagnosis of sensor 

 aults is conducted directly on the structure (“ed e co putin ”) by  eans o  the portable 

main station, which receives data from the wireless sensor nodes and applies the FD models 

based on AI, avoiding sending raw data to a centralized server for analysis.  

By using IoT-based off-the shelf hardware components and open-source software, the 

system can scale to large structures with multiple hierarchical clusters of wireless sensor 

nodes and portable main stations, while keeping the implementation cost low. However, the 

portable main station based on Raspberry Pi, faces computational limitations when training 

AI models onboard. During the validation test, acceleration data has been used to train the 

AI-based FD  odels “o  line”, and only the trained FD  odels run on the  ain station.  o 

conduct the training of the FD models onboard of the main station, either (i) a 

computationally more powerful portable computer may be used, or (ii) the AI-based FD 

models may be optimized for embedded, portable computers. Solving one of the two 

limitations when training the FD models would fully decentralize FD assessment, 

representing potential future work. 

Summary and conclusions 

Considering the increasing trends in digitalization and the advances in AI and IoT technologies, 

wireless SHM is expected to draw from the technological advancements to improve the 

reliability and longevity of infrastructure. To this end, this paper has presented an AIoT-

enabled decentralized sensor fault diagnosis framework to assess the state of wireless SHM 

systems by detecting, isolating, and accommodating sensor faults in a decentralized fashion. 

The test results clearly demonstrate the feasibility of the DSFD framework, highlighting the 

advantages of the proposed approach, including real-time FD avoiding the transmission of raw 

data to centralized servers, and opportunities to scale SHM systems at low implementation and 

installation costs. In addition, the DSFD framework enables real-time data visualization, data 

storage, and remote interaction with the SHM system. In future work, the SHM system may be 

augmented by increasing the number of clusters of wireless sensor nodes and portable main 

stations to be deployed on a large-scale testing bridge [17], to demonstrate the capability of the 

DSFD framework in real-world conditions. Furthermore, improvements of the DSFD 

framework may focus on adding a fault identification algorithm to classify the type of sensor 

fault, and on replacing the current hardware with more computationally powerful components 

to train FD models directly onboard of portable main stations. 
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