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Abstract. Fault diagnosis (FD), encompassing fault detection, isolation, identification 

and accommodation, is critical for reliable structural health monitoring (SHM) 

systems, ensuring correction of sensor faults that may corrupt or invalidate monitoring 

data. While sensor fault identification has received scarce attention within FD of SHM 

systems, recent methods have been proposed for identifying single sensor faults. 

Nonetheless, real-world SHM systems are prone to combined faults, i.e. different 

faults that affect individual sensors simultaneously. Identifying combined sensor 

faults is essential for improving the quality of FD and for gaining insight into the 

causes of sensor faults. This paper presents an approach for identifying combined 

sensor faults, referred to as ICSF approach, aiming to identify sensor faults occurring 

simultaneously in individual sensors using time-series data, thereby improving the 

quality of FD in SHM systems. Leveraging a recurrent neural network, specifically a 

long short-term memory network, a classification algorithm is implemented for 

mapping time-series data to combined sensor faults. The ICSF approach is validated 

using acceleration measurements collected by a faulty sensor from a real-world SHM 

system installed on a pedestrian bridge. The results demonstrate the effectiveness of 

the ICSF approach in identifying combined sensor faults, enhancing sensor FD in real-

world SHM systems. 

 

Keywords: Identification of combined sensor faults, sensor fault diagnosis, structural 

health monitoring, classification networks, long short-term memory. 

1. Introduction  

Structural health monitoring (SHM) utilizes data collected by sensors (“sensor data”) for non-

destructive evaluation of structures, ensuring continuous updates on structural conditions, to 

enhance user safety and enable cost-efficient maintenance [1]. Long-term sensor operation 

in SHM systems may lead to sensor faults, due to aging and harsh environmental conditions, 

which need to be eradicated via fault diagnosis [2]. 

Fault diagnosis in SHM involves fault detection to capture faults, fault isolation to 

localize the faults, fault identification to determine fault types, and fault accommodation to 

compensate for the effects of faults [3]. Commonly known sensor fault types encompass 

various deviations from actual sensor data, including (i) bias, characterized by consistent 
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divergence from actual values, (ii) drift, involving gradual deviations of sensor data over 

time, (iii) gain, expressed as constant scaling of sensor data, (iv) precision degradation, 

observed when white noise contaminates sensor data, (v) complete failure, manifesting as a 

constant value (“constant complete failure”) or noise (“noisy complete failure”) that replaces 

sensor data over time regardless of actual structural changes, and (vi) outliers, representing 

discontinuous observations deviating from sensor data at individual time points [4, 5]. 

Fault diagnosis (FD) approaches in SHM systems, reported in literature for decades, 

have centered around fault detection, isolation, and accommodation. In [6], Kullaa has 

proposed a detection, isolation, and accommodation approach for sensor faults in SHM 

systems, while Steiner et al. have proposed support vector regression for decentralized sensor 

fault detection and isolation [7]. Deng et al. have conducted a review of sensor fault detection 

approaches in SHM, detailing the advantages, disadvantages, and scope of each method [8]. 

Nevertheless, sensor fault identification has received limited attention so far, although 

knowledge of fault types may be crucial for enhancing the quality of fault diagnosis and 

understanding the root causes of sensor faults in SHM systems. The reason fault 

identification is often neglected is the complexity of modeling, caused by the mapping of 

sensor data to fault types, that increases the computational burden. However, recent studies 

have started exploring sensor fault identification using various approaches, including rough 

set theory [9], convolutional neural networks [10], and support vector machine (SVM) [11]. 

The fault identification studies found in literature assume the existence of single fault types, 

i.e. individual faults happening one at a time. However, combined sensor faults, i.e. multiple 

sensor faults occurring simultaneously in individual sensors, may occur in real-world SHM 

systems [12] and have received scarce attention. Sporadic approaches on identifying 

combined sensor faults have been reported in other disciplines. For instance, Cheng et al. 

[13] have used adaptive particle swarm optimization and SVM for identifying combined 

sensor faults, and Abboush et al. [14] have employed ensemble long short-term memory 

(LSTM) networks and random forests to identify combined sensor faults. Nonetheless, not 

all commonly known sensor faults have been considered in literature for identifying 

combined sensor faults. 

This study proposes an approach for identification of combined sensor faults (ICSF) 

in SHM systems. The ICSF approach employs an LSTM network for classifying sensor data 

into types of combined sensor faults. Validation tests are conducted using real-world SHM 

data (acceleration measurements) recorded from a pedestrian bridge. The results show that 

the ICSF approach can accurately and reliably identify combined sensor faults, enabling 

better understanding of the causes of sensor faults in SHM systems, which leads to improving 

the quality of SHM systems. In the remainder of the paper, an overview of the ICSF approach 

is given. Then, the implementation and validation using real-world sensor data are presented. 

Finally, a discussion of the results and conclusions with future research directions are 

provided. 

2. Overview of the ICSF approach 

This section presents an overview of the ICSF approach comprising preparation of input data 

and development of the LSTM network, which, upon finishing training, results in a 

“classification model” capable of identifying combined sensor faults. The ICSF approach 

builds upon previous work of the authors on fault diagnosis, specifically on the AFDAR 

approach for fault detection, isolation, and accommodation, presented in [15]. Although the 

fault identification part seems as an add-on to the AFDAR approach, the ICSF approach is 

designed as standalone, implicitly integrating the fault detection part, as will be shown in the 

paper. Figure 1 depicts the ICSF approach through an activity diagram, consisting of two 
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main activities, “preparing the input dataset” and “developing the classification model”. The 

former activity involves four actions, while the latter activity comprises three actions, as 

further described. 

 

 

Fig. 1. Illustration of the ICSF approach: Activities and actions 

2.1 Preparing the input dataset 

The first activity of the ICSF approach is preparing the input dataset, in which sensor data is 

first collected over a “data collection period”, with each sensor gathering p data points. Next, 

a correlation analysis determines the number of “correlated sensors” k, which corresponds to 

the number of inputs for the LSTM input layer. Correlation is essential for distinguishing 

trends in sensor data attributed to structural behavior from trends indicative of faults; this 

distinction is necessary for fault detection, as shown in [15]. The correlated sensors are 

labelled as i (i = 1, …, k), and sensor data f1→k is stored in matrix Ap×k, as shown in 

Equation 1.  
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Sensor faults are artificially injected into the sensor data to train the LSTM networks 

for identifying combined sensor faults in real-world SHM systems. The data stored in matrix 

A is replicated into the input dataset Gi (i = 1, …, k). Thereafter, both single and combined 

sensor faults are artificially injected into the vector fi, representing the data collected from 

sensor i. The types of the sensor faults injected are stored in the classification output dataset 

Oi, which also includes a “non-faulty” class, essentially covering the fault detection, 

rendering the proposed approach self-sufficient. As a result, the input dataset Gi includes 

non-faulty sensor data from sensors (1, 2, …, i-1, …, k), in addition to sensor data from sensor 

i consisting of single and combined faults. 

The total number of injected sensor fault C depends on the number of single sensor 

faults N, the number of single sensor faults n included in the combinations, and the number 

of single sensor faults m in each combination, as shown in Equation 2. 
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Upon injecting the sensor faults, data normalization is applied to the input dataset Gi 

using minimum-maximum normalization, shown in Equation 3, to prevent overfitting in the 

classification models, caused by extreme values in the sensor data.  
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In Equation 3, xnormalized represents the normalized sensor data, x denotes a data point, 

and xmin and xmax are the minimum and maximum data points, respectively. The normalized 

dataset G̃i is then split into training (Gt,i), validation (Gv,i), and testing (Gs,i) datasets for 

training the LSTM networks and developing the classification models. 

2.2 Developing the classification model 

The second activity of the ICSF approach involves developing the classification model. The 

training dataset Gt,i is used for training the i-th LSTM network, for each correlated sensor i 

(i = 1, …, k), which – upon completing training – results in the classification model Mi. 

During training, the training dataset Gt,i is sequentially fed into the LSTM network in batches, 

and the classification accuracy is computed against the corresponding classes of the output 

dataset Ot,i. Training iterations adjust the weighted connections between neurons until the 

Softmax function probabilities achieve a predefined classification accuracy level. At 

predefined intervals, the validation dataset Gv,i confirms classification accuracy trends and 

fine-tunes hyperparameters to prevent overfitting. After training, model accuracy is assessed 

using the testing dataset Gs,i, whose classification accuracy is calculated by measuring correct 

predictions among the total predictions. If the accuracy is satisfactory, the classification 

model of sensor i is saved. Otherwise, the LSTM architecture is adjusted, and a new LSTM 

network is trained, with new hyperparameters. The resulting model Mi recognizes features in 

the input dataset G̃i and classifies sensor data into combined fault types. The same process is 

repeated for all sensors. The ICSF approach is implemented and validated in an SHM system 

on a pedestrian bridge, as described in the following section. 

3. Implementation and validation of the ICSF approach 

This section shows the implementation and validation of the ICSF approach. The 

implementation description is structured in alignment with the activities of the ICSF 

approach, presented in the previous section, and a validation test is conducted on a pedestrian 

bridge to showcase the effectiveness of the ICSF approach in identifying combined sensor 

faults in real-world SHM systems.  

3.1 Overview of the bridge and the SHM system  

The validation test utilizes sensor data, i.e. acceleration measurements, collected by an SHM 

system installed on a pedestrian overpass bridge in Evosmos, Thessaloniki, Greece, as 

depicted in Figure 2 [16]. The pedestrian bridge was constructed in 2016 and features a 

composite structure with a steel framework supporting a reinforced-concrete deck. The deck 

measures 35 m in length and 4.60 m in width and is supported by cylindrical reinforced-

concrete columns connected to two steel girders at each end using elastomeric bearings. The 

composite structure includes inwardly inclined steel arches, connected by steel cables, and 

reinforced by steel beams for lateral stability.  

The SHM system comprises four accelerometers, namely S1, S2, S3, and S4, 

previously validated as non-faulty sensors. The accelerometers are evenly distributed along 

the central axis, spaced 7 m apart. In addition, a “faulty” accelerometer, labeled FS2, i.e. 

identified as faulty in previous experiments, is placed in close proximity to the non-faulty 

accelerometer S2. Figure 3 provides a top view of the pedestrian bridge, indicating the 

positions of both faulty and non-faulty accelerometers. 
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Fig. 2. The pedestrian bridge in Evosmos, Greece Fig. 3. Top view of the pedestrian bridge with the 

accelerometers 

3.2 Implementation of the ICSF approach on the bridge  

The implementation involves collecting sensor data from the SHM system of the pedestrian 

bridge, and developing the classification models using MATLAB [17]. The fault 

identification capabilities of the classification models are verified by artificially generating 

and injecting combined sensor faults into the sensor data, which is then normalized and split 

for training, validation, and testing. The LSTM networks are first created and trained until 

satisfactory accuracy is achieved, and the corresponding classification models are saved for 

identifying combined sensor faults using newly collected data. 

The acceleration measurements are obtained from the non-faulty accelerometers S1, 

S2, S3, and S4, over a 90-minute data collection period at a sampling rate of 128 Hz. The total 

number of data points is p = 692,628, recorded by each accelerometer. Next, Pearson 

correlation analysis is conducted on the acceleration measurements to identify the correlated 

sensors. The analysis reveals a strong correlation (> 0.90) among all four accelerometers, i.e. 

k = 4. The lowest correlation coefficient is observed at 0.937 between sensors S1 and S4. 

Then, the acceleration measurements of the correlated accelerometers f1→k = 4 are stored in 

matrix A692628×4. Seven types of single sensor faults (N = 7) are considered, comprising bias, 

drift, gain, precision degradation, complete failure (constant and noisy), and outliers. For 

combined sensor faults, combinations of two single faults within the same sensor (m = 2) are 

explored. Complete failure (complete and noisy) inherently cannot be combined with other 

sensor faults and, is excluded from the combinations (n = 5), resulting in a total of 

C (n, m) = 17 single and combined sensor faults. 

The acceleration measurements, initially stored in matrix A692628×4, are used to 

generate four input datasets, each divided into 17 subsets corresponding to the sensor fault 

types. The 17 fault types are artificially injected into the i-th input dataset Gi (i = 1, …, 4), 

with the corresponding classes stored in the i-th output dataset Oi (i = 1, …, 4). Next, the 

input dataset i is normalized according to Equation 3, and the normalized dataset G̃i is split 

into a 70% training dataset (484,838 data points), a 15% validation dataset (103,894 data 

points), and a 15% testing dataset (103,894 data points). The normalization parameters, xmin 

and xmax, used during training, are saved for future application to new sensor data, fed into 

the classification model Mi. The initial architecture for the LSTM network is defined, 

featuring a sequence input layer with a length equal to the number of correlated sensors 

(k = 4), and an output layer comprising a fully-connected layer, the Softmax function, and a 

classification layer with 17 classes, representing one sensor fault per class. After a trial-and-

error process, three hidden layers are defined, each consisting of an LSTM layer followed by 

a dropout layer with the dropout probability set equal to 20 %. Four classification models 

(M1, M2, M3, and M4) are developed, each dedicated to classifying combined sensor faults in 

sensors S1, S2, S3, and S4 respectively. The LSTM network architecture is illustrated in 

Figure 4. 
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Fig. 4. Network architecture of the classification models 

Upon training, the model accuracy is assessed using the testing dataset, with an 

accuracy threshold set to 85%, determined based on previous experience [15]. All models 

exhibit accuracy values higher than 90%, with the lowest accuracy value of 90.3% observed 

in model M2. The capability of the ICSF approach to identify real-world sensor faults is 

showcased in the following subsection. 

3.3 Validation of the ICSF approach on the bridge and results  

The validation test uses acceleration measurements from the SHM system of the pedestrian 

bridge, specifically from the faulty accelerometer FS2. The classification model M2, trained 

to identify faults in sensor S2, is repurposed to identify faults in sensor FS2. Data recorded by 

the sensors S1, FS2, S3, and S4 is used as input into the classification model M2. The 

acceleration measurements have a duration of approximately 7 minutes at a sampling rate of 

128 Hz, totaling p = 53,688 data points. The classification model identifies combined sensor 

faults in four time-windows, indicated in Figure 5 and listed in Table 1. The effectiveness of 

fault identification by M2 is validated by visually comparing the acceleration measurements 

from the non-faulty sensor S2 and the faulty sensor FS2.The acceleration measurements from 

the faulty accelerometer FS2 significantly deviate from those of the non-faulty accelerometer 

S2 due to the faults occurring in FS2.  

Table 1: Results of the classification model M2. 

Window Start data 

point 

End data 

point 

Start time 

(s) 

End time 

(s) 

Combined sensor 

fault 

Probability 

1 2,100 6,200 16.4 48.4 Drift + gain 94.9 % 

2 7,900 13,500 61.7 105.4 Bias + drift 100 % 

3 25,300 29,100 197.6 227.3 Bias + drift 100 % 

4 46,800 48,300 365.6 377.3 Bias + outliers 90.3 % 

 

As shown in Figure 5, window 1 exhibits a linear trend and scaling of the acceleration 

measurements, indicative of drift and gain. In window 2, a downward shift of the 

measurements occurs followed by linear deviation, which is identified as bias and drift. A 

similar trend is observed in window 3, albeit the combined sensor fault starts with drift and 

is followed by bias. Finally, window 4 exhibits a constant offset combined with isolated 

peaks in the measurements, which is a characteristic of bias combined with outliers. While 

the classification model identifies faults in windows 1, 2, and 3 with high confidence, 

expressed as classification probability, the identification of “bias + outliers” in window 4 is 

somewhat challenging, due to the intermittent nature of outliers within the data, leading to 

imbalanced training data for the LSTM network, i.e. fewer occurrences of outliers in the 

training dataset, compared to the other sensor faults. Nevertheless, identifying outliers in 

fault diagnosis can be covered by signal pre-processing techniques. The results of the 
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validation tests show the capability of the ICSF approach in identifying both single and 

combined sensor faults, indicating the effectiveness of the approach in enhancing the quality 

of fault diagnosis by providing insights into the causes leading to sensor faults in real-world 

SHM systems. 

 

Fig. 5: Acceleration measurements collected by the non-faulty sensor S2 and the faulty sensor FS2 

4. Conclusions and future work  

Fault diagnosis in SHM systems involves fault detection, isolation, identification, and 

accommodation. However, fault identification, particularly for combined sensor faults, has 

received limited attention. Current FD methods often focus on single sensor faults, 

overlooking real-world scenarios, where combined sensor faults occur. To enhance the 

quality of fault diagnosis and to gain insight into the causes of sensor faults, this paper has 

introduced the ICSF approach, which is able to identify combined sensor faults occurring 

simultaneously within individual sensors using classification models based on LSTM 

networks. To validate the ICSF approach, a validation test has been conducted using 

acceleration measurements from a real-world SHM system installed on a pedestrian bridge 

in Greece. The results demonstrate the effectiveness of the classification models in 

identifying various combined sensor faults, such as bias, drift, gain, precision degradation, 

and outliers. However, the classification models have faced challenges in identifying outliers 

due to the imbalanced training data caused by the intermittent patterns of outliers in 

continuous signals. Since outliers can be identified and removed through signal pre-

processing, the significance of identifying outliers within the FD process is deemed low. 

Overall, the proposed ICSF approach represents an advancement in improving fault diagnosis 

in SHM systems. Future research directions include decentralizing the approach, exploring 

imbalanced-data-handling methods, and enhancing transparency through explainable 

artificial intelligence interfaces. 
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